新闻中心

专业的株洲长沙陶瓷超滤膜厂家

* 来源: * 作者: * 发表时间: 2021-06-15 1:45:19 * 浏览: 4

长沙悬浮物废水超滤膜特有的微孔可有效阻留细菌、大多数病毒、胶体以及淤泥,达到分离、分级、纯化、浓缩的目的如今在工业及生活领域已获得广泛应用,用于分离、浓缩、纯化生物制品,医药制品以及食品工业中,还用于血液处理、海水淡化、废水处理、饮用水净化和超纯水制备中的终端处理。无机超滤膜特别是无机长沙陶瓷超滤膜由于具有抗机械性强、耐高温、耐腐蚀、耐化学试剂等优点在膜分离领域应用广泛。目前长沙陶瓷超滤膜大多用粒子烧结法制备基膜,并用溶胶-凝胶法制备反应层,在制备长沙陶瓷超滤膜过程中都要使用多孔的支撑体作为载体,而载体的形状都是统一固定的,不能随着实际生产需要随意改变,复杂的结构形状也无法成型,从而限制了长沙陶瓷超滤膜的使用范围。中国专利公开号CN102743979A公开了一种氧化锆长沙陶瓷超滤膜的制备方法,本发明通过化学共沉淀法制备草酸锆溶胶,采用低温煅烧方法制备得到易分散的氧化锆粉体,然后进行研磨分散,随后加入成膜助剂、干燥控制剂、消泡剂制得涂膜液,将该涂膜液涂于多孔陶瓷膜支撑体上,经过干燥、烧结得到氧化锆长沙陶瓷超滤膜膜层,降低了能耗,提高了超滤膜的性价比。中国专利公开号CN101791524A公开了一种非对称结构长沙陶瓷超滤膜及其制备方法,本发明将一维纤维状材料分散于溶胶中,充分混合,加入分散剂、增稠剂、消泡剂配制成制膜液,在多孔支撑体上涂膜,经烘干后形成过渡层,在过渡层表面涂覆溶胶制膜液,将湿膜晾干、烘干,焙烧,自然降温即得非对称结构长沙陶瓷超滤膜,该长沙陶瓷超滤膜具有水通量大大优点。中国专利公开号CN1686920A公开了一种陶瓷微滤膜的制备方法,本方法将纳米级氧化物分散于由分散剂、增稠剂、消泡剂和防腐剂混合水溶液中,均匀形成涂膜液,再添加模板剂,用所制得的涂膜液在多孔金属或者多孔陶瓷支撑体上涂膜,并在湿膜晾干、烘干后,处理脱除聚合物模板剂,最后进行焙烧成型,得到陶瓷微滤分离膜。上述专利都是长沙陶瓷超滤膜的制备方法,采用了不同的配方和制备方法,制得了性能优异的长沙陶瓷超滤膜,但都使用了多孔支撑体作为膜的载体,从而制备的超滤膜具有形状单一、成型周期长、超滤膜成型方法落后的缺陷,不利于长沙陶瓷超滤膜在实际生产过程中的需要,限制了长沙陶瓷超滤膜的应用和发展。具体内容针对目前长沙陶瓷超滤膜形状单一、成型困难、成型周期长的缺陷,提出了一种长沙陶瓷超滤膜的制备方法,为实现上述目的,本发明将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行快速成型处理,制备成各种空间结构的长沙陶瓷超滤膜,成型方法简单,实用性强,水通量大等。一种长沙陶瓷超滤膜的制备方法的具体制备步骤如下:1)将10-20重量份的胶体颗粒用70-80重量份溶剂在常温下边搅拌边进行溶解,搅拌速度50-80r/min让胶体颗粒在溶剂中形成分散均一、稳定的溶胶;2)将步骤1)得到的溶胶与2-5重量份的造孔剂一起加入到行星式球磨机中,在300-350r/min的转速条件下充分研磨、分散、混合20_30min后出料,进行抽滤得到混合物;3)将步骤2)得到的混合物放入高温烧结炉中,在600-800°C的温度下烧结l_2h,常温冷却后出料,再用行星式球磨机进行研磨,然后过筛,得到多孔陶瓷微粒;4)根据实际生产情况的需要,对长沙陶瓷超滤膜在厚度、形状、空间结构上的要求进行分析,利用计算机建立数字模型,编写三维快速成型的执行程序和命令;5)将步骤3)得到的多孔陶瓷微粒加入到粉末烧结激光快速成型机的料槽中,用计算机导入步骤4)编写好的执行程序和命令,粉末烧结激光快速成型机在计算机的自动控制下进行三维快速成型,制得不同形状、立体结构、厚度的长沙陶瓷超滤膜。上述一种长沙陶瓷超滤膜的具体制备步骤1)中,所述的胶体颗粒为氧化铝、氧化钛、氧化锆、氧化硅溶胶中的一种或多种;所述的溶剂为去离子水;所述的造孔剂为直径为IO-1OOnm的纳米碳酸钙、纳米碳酸镁中的一种或两种。

长沙植物提取废水范苏等利用溶胶-凝胶法在平均孔径为200nm的多通道α-Al2O3支撑体上,制备出了TiO2超滤膜,其对葡聚糖的截留分子量为9000DA,对染料“直接黑”(MW=909g·MOl-1)及退浆废水中聚乙烯醇(MW=70000g·MOl-1)的截留率均达到99%以上此外,控制超滤膜的烧成温度可以有效调控超滤膜的分离精度,使其适用于不同的分离和浓缩体系。琚行松采用颗粒溶胶路线制备出ZrO2超滤膜,膜的烧结温度从1100℃降低到500℃,膜的最可几孔径由50nm减小到20nm,随着温度的降低分离精度提高。长沙陶瓷纳滤膜具有更高的分离精度,可用于低聚糖、染料、多价离子等选择性分离。TSuru等通过聚合溶胶路线制备出平均孔径0.7~5nm可调控的TiO2纳滤膜,对PEg的截留分子量为500~2000DA,其中截留分子量为800DA的纳滤膜对Mg2+的截留率为88%,对棉籽糖(MW=504g·MOl-1)的截留率达99%。Benfer等以正丙醇锆为前驱体,采用聚合溶胶路线制备出ZrO2纳滤膜,其对染料“直接红”(MW=990.8g·MOl-1)的截留率达99.2%。TSuru等在平均孔径约1μM的α-Al2O3支撑体上经多次涂覆制备出平均孔径为1.2nm的TiO2膜层,其截留分子量为600DA,对nACl的截留率达60%。漆虹等通过聚合溶胶路线制备出平均粒径为1.2nmTiO2溶胶,所制备的TiO2纳滤膜对PEg的截留分子量为890DA,对0.025MOl·l-1的CA2+和Mg2+溶液的离子截留率分别达到96.5%和98%(Ph=4.0,5×105PA)。TSuru等采用颗粒溶胶路线制备了一系列不同粒径分布的SiO2-ZrO2复合溶胶,并制备出平均孔径为9、1.6、1.0nm的SiO2-ZrO2复合膜层,所用的溶胶粒径越小,膜的平均孔径越小。AuST等通过聚合溶胶路线制备TiO2-ZrO2复合纳滤膜,通过调整钛锆前驱体的比例,制备出不同分离精度的纳滤膜,对染料“直接红”的截留率均大于95%,并且相比较于纯TiO2和ZrO2纳滤膜,具有较高的相转化温度和热稳定性。2修饰技术溶胶-凝胶法制备小孔径超滤膜已经商业化,为了进一步提升膜的渗透与分离性能,研究者们也一直研究减小陶瓷膜孔径和改善孔径分布的修饰技术。

长沙煤油废水(2)浓缩倍数对膜通量的影响较小(3)在对聚醚废水的分离过滤中,跨膜压差对膜通量的影响要大于温度。(4)试验中,有机污染物是造成膜污染的主要因素,通过反复试验探索,改进了原有的清洗方法,既达到了良好的清洗效果,又缩短了清洗时间。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

长沙制版废水对于废油高温提纯再生,无机长沙陶瓷超滤膜较传统工艺更有优越性废油所含污染物高达20%,这些污染物包括水、矿泥、含碳颗粒以及金属颗粒。传统的再生处理方法加大了酸和粘土的用量,这样使得酸性污泥的处理问题进一步恶化。(3)无机超滤膜不仅在液体分离方面具有广泛的应用前景,而且是气体分离膜和催化膜的基础。理想的气体分离膜具有筛分作用,其平均孔径在1nm以下,其必备条件是具有高质量的超滤膜。在膜催化反应中,以分子筛膜以及离子、电子混合导体膜有发展前途。制备分子筛膜必须有完整无缺陷的纳米级孔径膜,即超滤膜;而混合型导体膜也希望在多孔载体上形成,以提高膜渗透性。因此,无机超滤膜的制备技术是膜催化反应的基础之一,其工业化是膜催化反应工业应用的必备条件。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

长沙泡菜废水CVD的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性,目前尚处于较多实验室的基础研究阶段2超临界流体沉积技术修饰陶瓷膜孔径超临界流体沉积(SuPerCriTiCAlfluiDDePOSiTiOn,SCfD)技术是以超临界流体为溶剂(如SC-CO2),携带陶瓷前驱物沉积在多孔陶瓷的孔隙中,是一种修饰陶瓷膜的路线。通过降低压力,陶瓷前驱物在超临界流体中的溶解度减小并在孔中沉积下来,从而使陶瓷基体孔径减小。TATSuDA等采用四异丙苯氧化钛(TTiP)为前驱物,在介孔氧化硅材料中修饰TiO2颗粒,结果表明采用SC-CO2作溶剂时,TTiP能够渗入平均孔径为3~7nm的介孔氧化硅材料中,使孔道减小。BrAS-Seur等提出采用超临界异丙醇为溶剂,在氧化铝基底上沉积钛醇盐前驱体,氧化铝基底的孔径由110nm减小至5nm。WAng等基于孔径变化的动力学方程、超临界溶液相平衡模型和经典成核理论建立了一套用于描述超临界流体渗透过程的数学模型,并通过实验使α-Al2O3的孔径分布范围变窄,并将平均孔径由110nm减小至80nm。3其他孔径修饰的新技术原子层沉积技术(AlD)是一种可以将物质以单原子膜形式一层一层地沉积在基底表面的方法。li等在平均孔径50nm基底上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,在沉积600次后,对BSA的截留率由9%升至97.1%。目前,表面接枝技术较多地用来调节膜材料的表面性质,对于具有较小孔径的膜,接枝过程也将改变膜的孔结构,达到减小孔径的目的。陶瓷膜表面一般会吸附水形成羟基团,可以通过接枝有机硅烷的方法在介孔膜表面修饰一层有机分子层。通过调控接枝分子的链长与官能团等特性实现调控孔径大小的目的,以获得特殊的表面性质以适应各种不同需要。

目前国内正在开发应用的一种陶瓷膜材料为MBR长沙平板陶瓷膜材料,它是基于一种蜂窝状的平板膜材料,主要用于膜反应器水处理工艺中污水深度处理,可代替现有有机膜组件,提高膜的运行效率、使用寿命长沙平板陶瓷膜材料由于具有机械强度高、化学稳定性好、透水性高、耐氧化、抗污染性好、易于清洗再生、使用寿命长等优点,可有效解决现有其它膜材料在工程应用过程中存在的使用寿命短,易受酸碱腐蚀等问题,特别适于高浓度、难处理污水的高效净化。目前这一材料已在国内的垃圾渗滤液处理、化工污水处理、市政污水处理方面开发应用,未来市场前景广阔。另外,国内在消化吸收国外先进的技术方面,于本世纪初采用真空毛细管原理开发的一种真空陶瓷滤盘,在一定真空下具有透水不透气的效果,以此为核心过滤介质,开发的真空圆盘陶瓷过滤机,被广泛应用于各种“杂、细、粘”物料矿物的脱水工艺中。这种真空陶瓷圆盘过滤机相比传统的物料脱水设备,如真空过滤机、板框过滤机及离心过滤机等,脱水效率和节能效果有了明显提高,相同处理能力下,过滤机整机能耗约为其它真空过滤机1/10,处理成本约为板框式过滤机50%,同时滤饼含水量低,滤液清澈,滤板寿命长,可减少大量设备维修维护费用,被誉为实现了选矿物料脱水设备的二次革命。经过长期发展和过滤设备不断更新,真空圆盘陶瓷过滤机在国内选矿业物料脱水领域应用愈来愈广泛,目前已在铅锌矿、硫金矿、铁矿、煤浮选行业大量推广应用。随着近10年国家洁净煤计划实施及节能减排政策的实施,高温陶瓷膜材料在国内得到一定研究和发展,高温陶瓷膜材料在高温气体净化领域的应用也越来越广泛,从冶炼行业高温烟尘净化、到一些新材料领域的高温放空气体净化、垃圾焚烧尾气净化、一直发展到高温煤气净化等。高温陶瓷膜材料用于高温气体净化优点是使用温度高(900℃以下)、使用压力高(4MPa以下)、过滤效率高(99.95%)和使用寿命长(3~10年)等。可以代替滤布,用于高温、高压气体过滤等,可以解决传统滤布耐温低、易烧蚀、易腐蚀、易磨损等问题,减少气体冷却系统,提高过滤效率和余热利用效率、延长过滤设备使用周期。可以说高温陶瓷膜过滤材料的推广应用对于解决特殊领域的高温气体净化技术难题,促进冶金冶炼行业的清洁生产、节能减排,促进化工、新能源材料领域的工艺革新、减少垃圾焚烧排放物排放方面会起积极作用。尤其是在国家大力发展的煤化工产业中,煤气化及低温煤干馏工艺中产生的粗煤合成气、煤焦油气中都含有大量微细颗粒杂质,必须限度的除去,试验证明其它材料或工艺无法满足要求,而高温陶瓷过滤材料则是最理想的过滤材料之一。

3、PVDF中空纤维超滤膜表面性能优越超滤膜在实际使用过程中,控制膜过程污染一直是行业研究的主要课题控制膜过程污染的有效方式有:适合的抗污染膜材的选择、过滤操作的强化、对原料液的预处理等。在家用净水行业,由于操作要求的限制,太多辅助、复杂的过滤操作显然是不现实的,净水器的过滤操作要求是简单易行。家用净水器原水是市政自来水,超滤膜过滤根本不需要对原水进行预处理。所以,超滤膜在使用过程中控制膜污染的方式是选用适合的抗污染膜材。PVDF是目前世界公认的高抗污染材料,其生产的PVDF超滤膜抗污染性能远远高于其它材料膜。作为一种含氟的高分子材料,由于其中的氟元素具有较强的负极性,从而使PVDF膜不易吸附有机物而具备良好的抗污性能。采用PVDF生产的膜组织结构均匀,孔隙分布均匀,膜表面孔小而内部孔大,这种结构也是膜孔不易污堵基本条件之一。PVDF作为一种有机高分子材料,和其它高分子材料一样,具有高疏水性。纺制PVDF中空纤维膜丝时,一般都会对PVDF进行亲水性改性。改性后生产出来的PVDF膜丝亲水性能好,表面开孔率高,分布均匀。

这种多通道陶瓷膜材料主要是以高纯氧化铝(或刚玉砂)为原料,首先采用挤出成型工艺制备孔径3~5um多通道(包括单通道、7通道、19通道、37通道等)管状陶瓷膜支撑体,然后在支撑体通道内表面采用粒子烧结工艺或溶胶-凝胶工艺制备一层或多层膜过滤层,膜层孔径从0.8um到几个纳米不等,膜层材料主要有氧化铝质、氧化钛质、氧化锆质或其复合材料特殊的通道结构设计、光滑的膜表面、较高进一步拓宽了产品应用领域。目前,国内在多通道陶瓷膜材料的研究及开发应用方面已达到较高水平,在膜材料制备、抗污染性能研究、膜材料修饰与复合技术、应用开发方面也都取得了较大进展,多通道陶瓷膜材料在目前国内陶瓷膜材料领域占有较大比重。进入21世纪以来,随着国家节能减排政策实施,高温气体净化技术对先进膜过滤材料的需要,具有耐高温、耐高压、过滤效率高、适用范围广的高温陶瓷膜材料引起国内重视。山东工业陶瓷研究设计院也在多年从事陶瓷膜材料研究开发基础上,从上世纪90年代末开始,开展了高温陶瓷膜材料的研究开发工作。先后采用热浇注成型工艺、挤出成型工艺以及等静压成型工艺先后完成了刚玉质、堇青石质以及碳化硅质陶瓷及陶瓷纤维复合膜材料的研究开发。其中以多孔堇青石陶瓷材料为支撑体,以莫来石-硅酸铝纤维为复合膜过滤层的堇青石质陶瓷纤维复合膜材料与其它多孔陶瓷材料相比,具有气孔率高、过滤阻力小体积密度小、耐高温性能优良等优点,可用于700℃以下各种高温气体(烟尘)净化,过滤精度小于1um,过滤阻力小于2000Pa,净化后气体杂质浓度一般小于10mg/N·m3。产品可广泛应用于冶炼、建材、焚烧炉等高温烟尘净化领域。另一种高温陶瓷膜过滤材料为碳化硅基陶瓷纤维复合膜材料,它是以先进的冷等静压近净尺寸成型工艺首先制备高温碳化硅陶瓷膜支撑体,以多晶莫来石短切纤维、刚玉砂等为原料,采用喷涂和烧结工艺在多支撑体表面形成一层均匀的陶瓷纤维复合分离膜层,膜层孔径可以控制在5~20um,厚度100~200um。通过支撑体层和膜分离层不同孔结构设计,可以获得不同机械性能、不同微孔性能的高温膜分离材料。这种高温碳化硅基纤维复合膜过滤材料使用温度可以达到900℃,工作压力可以达到几个兆帕,过滤精度可以达到0.2um,过滤后气体杂质浓度可以达到5mg/N·m3以下。