其中,专用氧化锆陶瓷膜解决了陶瓷膜处理轧钢乳化油废水通量稳定性的关键问题,获得了中国膜工业科技进步一等奖
聊城机油废水他们自主开发的陶瓷膜装备能够在化学反应存在的极端环境,实现无清洗状况下3个月以上的连续稳定运行,这被认为是中国陶瓷膜装备能够在连续化大工业中应用的保证这些研究成果先后获得江苏省科技进步一等奖、全国化工行业技术发明一等奖,2005年国家技术发明二等奖。 徐南平开发的陶瓷膜在化工、纳米材料、中药制备等领域的应用技术均为首创,拥有知识产权。其中,专用氧化锆陶瓷膜解决了陶瓷膜处理轧钢乳化油废水通量稳定性的关键问题,获得了中国膜工业科技进步一等奖。这项应用技术使新工艺的综合成本降至进口膜装置的1/3,并已在中国钢铁行业的十几家大型企业建立了近30个工程,产品销售额就过亿元。膜科学技术研究所膜应用实验仪 2001年10月底,由徐南平领导的南京工业大学膜科学技术研究所启动了“面向中药制备过程的陶瓷膜材料的设计与过程集成的研究”的863课题。该项目以中药生产过程为技术开发实施对象,用陶瓷膜过滤过程取代传统的醇沉工艺,建成每年5000吨中药提取液的陶瓷膜中药制备新工艺和配套工业装备,将陶瓷膜这一新材料用于中药制备的技术改造,推动行业科技进步和提高综合效益。和技术的突破同样令人振奋的是,南京工业大学开发的陶瓷膜技术正在大规模工业应用。陶瓷膜技术带动了一个产业,不仅产生了显著的社会效益和经济效益,还培养出了一批陶瓷膜研发、工程技术和管理人才,在中国形成了陶瓷膜的新产业。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
聊城陶瓷膜元件含颗粒废水的处理:钛白粉洗涤液、催化剂颗粒回收、超细粉体洗涤液中回收超细粉粒子等【食品、发酵工业】矿泉水的澄清制备;酱油、醋除菌除杂过滤;果汁、饮料、酒类的澄清过滤;糖业中脱色活性炭的回收及糖液精制。【生物、医药行业】生物发酵产物的分离和精制;中成药口服液的澄清过滤;生物制品的纯化及精制;空气除菌、除尘净化分离;脱色活性炭的过滤分离等。【其他领域】化工过程中的产品分离;高温气体除尘;油田回注水的处理;天然色素的生产等。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
聊城电镀脱脂废水无机膜由于具有很多优点,如耐腐蚀性、耐高温、耐生物降解性、易清洗、寿命长等,正日益受到广泛关注.20世纪80年代初日本汉方制剂专利中已采用微滤澄清水煎液再超滤除杂的工艺.目前国内在中药制剂方面也有研究和应用.我们采用南京化工大学膜科学技术研究所研制的陶瓷微滤膜,研究澄清中药黄芩提取液的陶瓷膜过滤技术,取得了良好的效果.实践证明,无机膜微滤技术是一种现实可行的技术,为中成药工业的技术革新提供了一条全新的、切实可行的途径.1实验1.1仪器与试药1.1.1仪器IM-1-1型聊城无机陶瓷膜微滤机(滤膜为19通道内管式陶瓷微滤膜,主要成分为氧化锆、氧化铝,内径8mm,外径12mm,管长1000mm,膜平均孔径0.2m,南京化工大学膜科学技术研究所研制);Agilent1100高效液相色谱仪,HP1100四元泵,HP1100紫外二极管矩阵检测器,HP1100自动进样器,ChemStation色谱工作站(美国Agilent公司).1.1.2试剂甲醇(色谱纯);乙腈(色谱纯);磷酸(A.R.);水为自制高纯水.1.1.3药材及对照品黄芩购自昆明市药材公司,经鉴定为中国药典2000版一部正品;黄芩苷购自中国药品生物制品研究所.1.2实验方法1.2.1药材提取方法以市售黄芩5kg为原料,水煎2次,次加水10倍量,第2次加水8倍量,每次沸腾1.5h后用4层纱布趁热过滤,滤液合并后作为微滤原料.滤液外观呈黑绿色,悬浮物多,浑浊不透明.1.2.2微滤方法实验时采用单根膜管,微滤机采用错流过滤方式,流程见图1.把料液加入储槽,经离心泵循环打入膜组件进行过滤,渗透液由膜组件侧面出口流出,截留液流回储槽,流速及过滤压差由阀门调节控制,流速由流量计读数换算得到,过滤压差由进口压力p1和出口压力p2相减得到.实验首先测定了2种不同膜材料下药液微滤时间对膜通量的影响(以便找出合适的膜材料);之后选择合适的膜材料测定不同流速、不同过滤压差对料液膜通量的影响(以便确定出合适的操作条件);在合适的条件下将药液进行循环微滤,待药液微滤至原液的80%时,加入适量的蒸馏水继续微滤,直到微滤液收集到原液质量的95%时,停止微滤.截留液称质量或量取体积,取样后弃去;微滤液称重或量取体积,取样后浓缩备用.最后进行膜污染的清洗实验.1.2.3定量分析方法黄芩苷采用高效液相色谱法测定,条件如下:色谱条件:参照中国药典2000年版一部黄芩项下HPLC含量测定方法,安捷仑EclipseXDB-C18柱(直径为5m,4.6mm150mm),流动相为V(甲醇)V(水)V(磷酸)=47530.2),检测波长为280nm,流速为1.0mL/min.对照品溶液的制备:精密称取黄芩苷对照品适量,加甲醇制成1mg/mL的溶液,即得.标准曲线回归方程为:A=32365.56-1997.75,r=0.9999(n=5),其中为黄芩苷质量浓度,单位g/mL;A为积分面积.供试品溶液的制备:精密量取黄芩提取原液、经过陶瓷膜处理的过膜液各0.5mL,加甲醇1.0mL摇匀,离心,取上清液即得.测定法:分别精密吸取对照品溶液与供试品溶液各5L,注入液相色谱仪,测定,即得.固形物含量依药典法(2000年)进行测定.2结果与分析2.1采用不同的膜材料考察微滤时间对膜通量的影响图2为22、过滤压差0.10MPa、流速5m/s条件下,采用不同膜材料Al2O3,ZrO2,考察膜通量随时间的变化关系,结果如图2所示.从图中我们可以看到,ZrO2的性能优于Al2O3.膜的材料性质包括膜的化学稳定性、热稳定性、表面性质及机械强度等,它对膜的分离性能影响很大.就ZrO2膜来说,0~10min,通量下降较快;10~60min,通量维持在160L/(hm2)以上;1h以后通量平稳下降.造成通量下降的主要原因是料液与膜之间相互作用产生吸附,改变了膜的特性,形成膜孔道的堵塞,同时料液中难溶性的固形物会在膜表面或膜孔中沉积,加重了膜的污染;随着过滤的进行,膜面错流的剪切作用使膜面滤饼层达到动态平衡,过滤阻力趋于稳定,这样膜通量就会平稳、缓慢地下降2.2膜面流速对膜通量的影响膜面流速是影响膜通量的主要因素之一.图3为ZrO2膜、22、过滤压差0.08MPa的条件下不同流速对膜通量的影响.从图3可见,当流速小于4m/s时,增大膜面流速可以有效地增大膜通量;当流速大于4m/s时,增大膜面流速反而会使膜通量减小.这是由于较高的剪切速度有利于带走沉积于膜表面的颗粒、溶质等,减轻膜污染,减轻浓差极化的影响,因而可以有效地提高膜通量[5].但过高的膜面流速会使单位时间循环量增大而膜通量减小.本体系最适宜的流速为4m/s.2.3操作压差对膜通量的影响操作压差也是影响膜通量的最主要的因素之一.图4为ZrO2膜、22、膜面流速为4m/s条件下测得的不同操作压差下的膜通量值.图中表明,当压差在0.10MPa以下时,操作压差与膜通量呈正比关系,膜通量随压差的增大而增大;当压差超过0.10MPa时,膜通量随压差的增大反而减小.这是因为无机膜过滤过程中存在着一个临界压力,在临界压力之下,膜通量与操作压差呈正比关系;而在临界压力之上,由于浓差极化等因素的影响,过滤压差与膜通量不再存在正比关系[5].所以,通过增大压力来增加膜通量要受到一定的限制,同时在高压下,泵的能量消耗较高.所以在本体系中,适合的操作压差为0.06~0.10MPa.2.4膜的清洗及再生实际操作过程中,膜通量会不断下降,这就需要适时地对膜进行清洗,以延长膜的使用寿命,降低生产成本,提高产品的收率.无机膜的价格相对较高,因此确定有效且稳定的清洗方法就显得特别重要.实验中采用了强碱、强酸交替清洗的方法,并测定了膜通量的恢复率.膜通量的恢复率可由下式得到2.5黄芩苷质量分数测定结果用高效液相分别测定了微滤前后黄芩提取液中有效成分黄芩苷的质量分数,结果见表2.3结论本文提出的用陶瓷膜对黄芩提取液进行澄清过滤在工艺上是可行的,其优点在于:抗污染能力强;对料液的前处理要求不高;膜可以反复再生;杂质去除彻底,透过液澄清透明,产品质量能得到充分保证等.具体情况见表1.对于本体系来说,适宜的操作条件为:ZrO2膜、常温、膜面流速4m/s、过滤压差0.06~0.10MPa;膜的清洗和再生方便,用多种清洗剂清洗后,膜通量恢复率可达96%以上.聊城无机陶瓷膜澄清中药提取液的研究尚有许多不足之处,如膜通量存在衰减问题、膜的污染速度较快、对某些成分有吸附作用等,这些都还在探讨、研究中.但是,该技术的显著优点是不可忽视的,其应用前景也是十分广阔的.陶瓷滤芯陶瓷膜陶瓷膜过滤器。
聊城锅炉冷凝水处理针对以上现象,一些学者尝试从理论上构建结构—性能关系而建立面向应用过程的膜微结构的设计方法Belfort等人在考虑膜组件优化设计时提出了关注膜微观结构的影响,但是由于流场流型和传递扩散方程计算复杂,虽然计算机技术的发展已经很容易得到的预测结果,但是很少有公司采用这种膜组件的设计方法。徐南平等人提出了面向应用过程的陶瓷膜材料设计理论研究方法,针对具体应用体系,利用模型预测选择最优结构的膜,根据陶瓷膜结构控制理论将其制备出来,最优结构的膜在最优操作条件下应用将程度地发挥膜技术的优势。这种新的膜应用和设计方法在钛白粉颗粒悬浮液体系得到了验证,并且进行了不同粒径分布和膜孔径分布的模拟计算机实验,为更好地掌握陶瓷膜过滤过程奠定了基础。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
聊城汽车洗涤废水陶瓷膜是由孔隙率30%~50%、孔径50nm~15μm的陶瓷载体,采用溶胶-凝胶法或其它工艺制作而成的非对称复合膜用于分离的陶瓷膜的结构通常为三明治式的:支撑层(又称载体层)、过渡层(又称中间层)、膜层(又称分离层)。其中支撑层的孔径一般为1~20μm,孔隙率为30%~65%,其作用是增加膜的机械强度,中间层的孔径比支撑层的孔径小,其作用是防止膜层制备过程中颗粒向多孔支撑层的渗透,厚度约为20~60μm,孔隙率为30%~40%,膜层具有分离功能,孔径从0.8nm~1μm不等,厚度约为3~10μm,孔隙率为40%~55%。整个膜的孔径分布由支撑层到膜层逐渐减小,形成不对称的结构分布。陶瓷膜根据孔径可分为微滤(孔径大于50nm)、超滤(孔径2~50nm)、纳滤(孔径小于2nm)等种类。进行分离时,在外力的作用下,小分子物质透过膜,大分子物质被膜截留,从而达到分离、浓缩、纯化、去杂、除菌等目的。应用陶瓷膜的研究始于20世纪40年代,其发展可分为3个阶段:用于铀的同位素分离的核工业时期,以无机微滤膜和超滤膜为主的液体分离时期,以及以膜催化反应为核心的全面发展的时期。20世纪80年代初期成功地在法国的奶业和饮料(葡萄酒、啤酒、苹果酒)业推广应用后,陶瓷膜分离技术和产业地位逐步确立,应用也已拓展至食品工业、生物工程、环境工程、化学工程、石油化工、冶金工业等领域,成为苛刻条件下精密过滤分离的重要新技术。1998年网上公布的膜和膜设备生产厂家及经营公司达452家,其中金属膜厂50家,陶瓷膜生产厂94家。因开发时期较晚且成本高昂,无机分离膜领域所占的市场份额还比较小,1997年美国无机膜市场销售额为1亿美元,其中陶瓷膜占80%左右,仅占膜市场的9%。另据估计,2004年世界陶瓷膜的市场销售额约超过100亿美元,无机膜的市场占有率占12%。
密封台装有3个密封圈和两个调整环,密封圈和调整环相间安装密封间隙的间隙宽度f为112316,1.2mm密封台长度L为4512316,50mm。密封圈的材质为三元乙丙橡胶,调整环材质为聚四氟乙烯塑料。本实用新型通过在密封槽增加密封圈,提高了花板和陶瓷膜管之间的密封强度,避免了运行中泄露,实施后运行三年未发现因密封圈压环造成的泄漏。通过调整花板与密封台之间的密封间隙和延长密封台长度,使陶瓷膜管安装时有一定的活动空间,消除同心度偏差引起的的应力,解决了安装过程膜管断裂的问题。本实用新型结构简单,成本低,实施后效果明显。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
系统因此能够以相对低的损失分离有害的温室气体同时,它们还可以获得高纯度氢气,该陶瓷膜成为能源部门(Energiewende)转型的关键技术。然而,该方法仍然有许多缺点,例如,需要高温用于氢气分离,因此意味着其需要大量能量;此外,迄今为止研究的膜不稳定,并且在含碳环境中不可用;氢气流量还不够高。德国正在开发的陶瓷膜能在减少电厂废气同时生产氢气由玛利亚·伊万诺娃(MariyaIvanova)领导的研究团队已经取得了一些重要的进展:通过将外来原子插入晶格中,它们的膜更稳定并且可以在较低温度下使用。但此研究的的成就是增加氢气流量。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
要消除澄清返浑比较困难,为了避免不合格盐水进入电解槽,必须增大合格盐水的储备量陶瓷膜盐水精制工艺采用膜表面错流过滤,陶瓷膜采用50nm孔径可以完全去除化盐水中的固体悬浮物(固体悬浮物直径大于50nm),使过滤盐水澄清透明。取代传统的澄清、过滤设备及其他膜过滤需要的预处理器,排除了大截面积澄清设备对盐水温度、浓度、流量等因素变化适应能力差对盐水质量的影响。只要满足沉淀生成的温度和时间条件,该工艺就能生产高质量的盐水。2、工艺流程短,自动化程度高,操作简单陶瓷膜盐水过滤工艺流程不需要预处理系统,工艺流程较短。陶瓷膜过滤器采用PLC控制器或DCS控制系统进行控制,自动化程度高,减轻了操作人员的劳动强度,只要控制好化盐温度和过碱量,就能保证一次盐水质量。3、占地面积小,投资节省陶瓷膜盐水过滤工艺结构紧凑、设备小,流程短,占地面积小,投资省。与目前应用的有机聚合物膜终端过滤分离工艺相比,也省去了前反应、料液预处理器和加压溶气系统,可使一次盐水装置总投资节省1/3左右陶瓷滤芯陶瓷膜陶瓷膜过滤器。
聊城无机陶瓷膜和有机膜相比有哪些优势 聊城无机陶瓷膜一直是陶瓷膜的主要加工原材料,是一种管状膜结构,但是还有一种叫有机陶瓷膜,人们普遍更喜欢聊城无机陶瓷膜,究其原因就是在于它身上具有的独特优势 聊城无机陶瓷膜跟有机陶瓷膜相比,聊城无机陶瓷膜更加耐高温,也更稳定,比有机陶瓷膜拥有更长的使用寿命和更强的清洗性能,在分离性上面,聊城无机陶瓷膜也更好。但是它也有自身的缺点,那就是制作起来十分麻烦,且花费的成本非常高,这是它必须克服的障碍。 是一家以工业膜过滤系统研发、生产、销售及配套安装施工服务为一体的专业化企业。公司先进的微滤、超滤、纳滤及反渗透膜过滤系统广泛应用于食品饮料除菌澄清过滤、果(蔬)汁澄清过滤、植(药)物深加工、水(海)产品深加工、农产品深加工、生物制药、生物发酵、超细粉体清洗纯化、精细化工、水处理和环保等行业。如有需要,随时致电联系。。
其中,目前国内正在试验开发的油页岩气化技术、生物质气化技术、低温煤裂解制油技术等,将是高温陶瓷膜材料未来几年内潜在应用市场陶瓷滤芯陶瓷膜陶瓷膜过滤器。