磁盘空间不足。 磁盘空间不足。 质量好的南平南平陶瓷超滤膜价格

新闻中心

质量好的南平南平陶瓷超滤膜价格

* 来源: * 作者: * 发表时间: 2021-03-27 1:24:19 * 浏览: 33

南平抛光废水处理通过调控接枝分子的链长与官能团等特性实现调控孔径大小的目的,以获得特殊的表面性质以适应各种不同需要SAh等发现接枝三甲基氯硅烷可以使多孔基底材料的孔径由3nm降低至2nm。fAiBiSh等通过两步反应将PVP接枝在南平陶瓷超滤膜上,改性后的膜孔径减小了25%~28%,提高了膜的截留性能。因此,为制备高渗透选择性陶瓷膜必须努力减小膜层颗粒的大小及通过修饰技术进一步减小孔径,并设法获得更窄孔径分布的陶瓷膜,达到更加精细的分离精度。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

南平泡菜废水中国专利公开号CN1686920A公开了一种陶瓷微滤膜的制备方法,本方法将纳米级氧化物分散于由分散剂、增稠剂、消泡剂和防腐剂混合水溶液中,均匀形成涂膜液,再添加模板剂,用所制得的涂膜液在多孔金属或者多孔陶瓷支撑体上涂膜,并在湿膜晾干、烘干后,处理脱除聚合物模板剂,最后进行焙烧成型,得到陶瓷微滤分离膜上述专利都是南平陶瓷超滤膜的制备方法,采用了不同的配方和制备方法,制得了性能优异的南平陶瓷超滤膜,但都使用了多孔支撑体作为膜的载体,从而制备的超滤膜具有形状单一、成型周期长、超滤膜成型方法落后的缺陷,不利于南平陶瓷超滤膜在实际生产过程中的需要,限制了南平陶瓷超滤膜的应用和发展。具体内容针对目前南平陶瓷超滤膜形状单一、成型困难、成型周期长的缺陷,提出了一种南平陶瓷超滤膜的制备方法,为实现上述目的,本发明将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行快速成型处理,制备成各种空间结构的南平陶瓷超滤膜,成型方法简单,实用性强,水通量大等。一种南平陶瓷超滤膜的制备方法的具体制备步骤如下:1)将10-20重量份的胶体颗粒用70-80重量份溶剂在常温下边搅拌边进行溶解,搅拌速度50-80r/min让胶体颗粒在溶剂中形成分散均一、稳定的溶胶;2)将步骤1)得到的溶胶与2-5重量份的造孔剂一起加入到行星式球磨机中,在300-350r/min的转速条件下充分研磨、分散、混合20_30min后出料,进行抽滤得到混合物;3)将步骤2)得到的混合物放入高温烧结炉中,在600-800°C的温度下烧结l_2h,常温冷却后出料,再用行星式球磨机进行研磨,然后过筛,得到多孔陶瓷微粒;4)根据实际生产情况的需要,对南平陶瓷超滤膜在厚度、形状、空间结构上的要求进行分析,利用计算机建立数字模型,编写三维快速成型的执行程序和命令;5)将步骤3)得到的多孔陶瓷微粒加入到粉末烧结激光快速成型机的料槽中,用计算机导入步骤4)编写好的执行程序和命令,粉末烧结激光快速成型机在计算机的自动控制下进行三维快速成型,制得不同形状、立体结构、厚度的南平陶瓷超滤膜。上述一种南平陶瓷超滤膜的具体制备步骤1)中,所述的胶体颗粒为氧化铝、氧化钛、氧化锆、氧化硅溶胶中的一种或多种;所述的溶剂为去离子水;所述的造孔剂为直径为IO-1OOnm的纳米碳酸钙、纳米碳酸镁中的一种或两种。上述一种南平陶瓷超滤膜的具体制备步骤2)中,所述的过筛是过2000-5000目的筛。上述一种南平陶瓷超滤膜的具体制备步骤3)中,所述的粉末烧结激光快速成型机采用选择性激光烧结成型技术,即采用C02激光器按电脑上设计好的三维图形,在计算机的控制下,把涂在工作台上的一层的打印粉末材料烧结成型的原理,是三维快速成型技术主要成型设备中的一种,主要由扫描系统、激光控制系统、加热元件、成型缸、供料系统、运动部件、冷却系统、运动控制系统、软件系统组成。利用快速成型中选择性激光烧结成型技术的原理,将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行成型处理,制成各种空间结构的南平陶瓷超滤膜,成型方法简单、成型周期短、实用,该南平陶瓷超滤膜的截留率大,孔径分布范围lO-lOOnm,在0.1Mpa的操作条件下水通量为100_200L/m3.h。突出的特点在于:1、采用三维快速成型技术,使南平陶瓷超滤膜成型方便、成型周期短、形状多样化,满足对南平陶瓷超滤膜各种形状和结构的需求。2、不需要模具,极大提高了南平陶瓷超滤膜的生产效率,拓宽了应用范围。3、生产过程简单,操作方便,生产成本低,易于工业化生产,应用范围更加广泛。

南平管式陶瓷膜经过长期发展和过滤设备不断更新,真空圆盘陶瓷过滤机在国内选矿业物料脱水领域应用愈来愈广泛,目前已在铅锌矿、硫金矿、铁矿、煤浮选行业大量推广应用随着近10年国家洁净煤计划实施及节能减排政策的实施,高温陶瓷膜材料在国内得到一定研究和发展,高温陶瓷膜材料在高温气体净化领域的应用也越来越广泛,从冶炼行业高温烟尘净化、到一些新材料领域的高温放空气体净化、垃圾焚烧尾气净化、一直发展到高温煤气净化等。高温陶瓷膜材料用于高温气体净化优点是使用温度高(900℃以下)、使用压力高(4MPa以下)、过滤效率高(99.95%)和使用寿命长(3~10年)等。可以代替滤布,用于高温、高压气体过滤等,可以解决传统滤布耐温低、易烧蚀、易腐蚀、易磨损等问题,减少气体冷却系统,提高过滤效率和余热利用效率、延长过滤设备使用周期。可以说高温陶瓷膜过滤材料的推广应用对于解决特殊领域的高温气体净化技术难题,促进冶金冶炼行业的清洁生产、节能减排,促进化工、新能源材料领域的工艺革新、减少垃圾焚烧排放物排放方面会起积极作用。尤其是在国家大力发展的煤化工产业中,煤气化及低温煤干馏工艺中产生的粗煤合成气、煤焦油气中都含有大量微细颗粒杂质,必须限度的除去,试验证明其它材料或工艺无法满足要求,而高温陶瓷过滤材料则是最理想的过滤材料之一。目前高温陶瓷膜材料已开始在国内的煤化工行业、冶炼行业、石油化工行业、垃圾焚烧及新能源材料领域推广应用。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

南平10纳米陶瓷膜Benfer等以正丙醇锆为前驱体,采用聚合溶胶路线制备出ZrO2纳滤膜,其对染料“直接红”(MW=990.8g·MOl-1)的截留率达99.2%TSuru等在平均孔径约1μM的α-Al2O3支撑体上经多次涂覆制备出平均孔径为1.2nm的TiO2膜层,其截留分子量为600DA,对nACl的截留率达60%。漆虹等通过聚合溶胶路线制备出平均粒径为1.2nmTiO2溶胶,所制备的TiO2纳滤膜对PEg的截留分子量为890DA,对0.025MOl·l-1的CA2+和Mg2+溶液的离子截留率分别达到96.5%和98%(Ph=4.0,5×105PA)。TSuru等采用颗粒溶胶路线制备了一系列不同粒径分布的SiO2-ZrO2复合溶胶,并制备出平均孔径为9、1.6、1.0nm的SiO2-ZrO2复合膜层,所用的溶胶粒径越小,膜的平均孔径越小。AuST等通过聚合溶胶路线制备TiO2-ZrO2复合纳滤膜,通过调整钛锆前驱体的比例,制备出不同分离精度的纳滤膜,对染料“直接红”的截留率均大于95%,并且相比较于纯TiO2和ZrO2纳滤膜,具有较高的相转化温度和热稳定性。2修饰技术溶胶-凝胶法制备小孔径超滤膜已经商业化,为了进一步提升膜的渗透与分离性能,研究者们也一直研究减小陶瓷膜孔径和改善孔径分布的修饰技术。实现陶瓷膜的修饰可以采用化学气相沉积法、超临界流体沉积技术、原子层沉积技术和表面接枝技术。这些调控孔的手段不仅可以修复可能存在的大孔缺陷,提高膜的稳定性,还可以进一步减小膜的孔径,提高膜的分离精度。1化学气相沉积法修饰陶瓷膜孔径采用化学气相沉积法(CVD)在多孔基底表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及渗透性能,是一项非常有效的手段。lABrOPOulOS等在573K温度下,采用循环CVD的方法,成功地将SiO2膜平均孔径由初始的1nm减小至0.56nm。lin等采用CVD法对平均孔径为4nm的γ-Al2O3陶瓷膜进行修饰,制备出厚约1.5μM,孔径范围为0.4~0.6nm的SiO2膜。

南平制版废水超滤膜分离具有以下几个特点:1)分离过程无相变,节能显著;2)分离在常温下进行,适宜热敏物质的分离和浓缩;3)推动力为压力,分离装置简单,操作方便易控;4)适应范围广但超滤膜存在膜品种少(主要是有机高分子膜为主)、膜孔径分布较宽和性能不稳定等缺陷,因此无机超滤膜的研究制备成为热点之一。无机超滤膜已在众多领域获得成功应用:(1)无机超滤膜能够适应固体含量较高的浓缩过程的需求,如鸡蛋白以及大豆奶蛋白的浓缩生产。根据报道,采用孔径在0.01-0.1um范围的复合南平陶瓷超滤膜在保持同等或更高的通量的同时可获得与对称玻璃膜或高分子膜相同的蛋白质截留率。(2)无机超滤膜对油也表现出高的截留特性。采用50nmMembralox@超滤膜进行油水分离,其渗透液中油的浓度低于5×10-5mol/L。对于废油高温提纯再生,无机南平陶瓷超滤膜较传统工艺更有优越性。废油所含污染物高达20%,这些污染物包括水、矿泥、含碳颗粒以及金属颗粒。传统的再生处理方法加大了酸和粘土的用量,这样使得酸性污泥的处理问题进一步恶化。(3)无机超滤膜不仅在液体分离方面具有广泛的应用前景,而且是气体分离膜和催化膜的基础。理想的气体分离膜具有筛分作用,其平均孔径在1nm以下,其必备条件是具有高质量的超滤膜。

由于材料的不同,生产的中空纤维膜性质各异PVDF作为一种结晶型的高聚合物,以耐腐蚀性能优良,机械强度和物理性能良好,卫生安全性能符合美国NSF的标准要求,耐辐射等优势成为膜材料。1、PVDF中空纤维超滤膜卫生安全PVDF作为涉水产品使用材料,经权威机构美国国家卫生基金会NSF(NationalSanitationFoundation)检验合格。2、PVDF中空纤维超滤膜使用寿命长PVDF作为一种含氟高分子材料,是氟塑料中最强韧的,具有较高的耐热性,不燃性,具有突出的耐气候老化性,耐臭氧、耐辐照、耐紫外光,耐腐蚀性能优良,室温下不被酸、碱、强氧化剂、卤素所以腐蚀。用PVDF材料生产的中空纤维膜同样具备优良的耐腐蚀性能(pH值大于10的强碱除外)。进行化学清洗时,对清洗药剂要求不高,便以操作。化学清洗作为PVDF膜丝通量恢复的一种主要手段,使PVDF超滤膜滤芯达到可反复使用的目的。再加上PVDF良好的耐腐蚀性能,PVDF膜丝使用寿命一般大于5年,其它膜材的膜丝使用寿命一般为1~2年就必须进行更换,大部分不能进行化学清洗。所以,目前市场上的大部为超滤膜滤芯因为寿命短,基本上做成抛弃式的(或一次性的),这就增加消费者的使用成本,也给环境污染(主要是固体性污染)造成一定的压力。3、PVDF中空纤维超滤膜表面性能优越超滤膜在实际使用过程中,控制膜过程污染一直是行业研究的主要课题。控制膜过程污染的有效方式有:适合的抗污染膜材的选择、过滤操作的强化、对原料液的预处理等。

到最后会因能耗太高而不得不停止再生膜因此,如何在过程中控制膜污染便是膜分离过程中必须考虑的首要因素。另一方面,膜分离技术是一个新型的分离技术手段,虽然处理矿井水效果好,不受矿井水质的波动限制。但在使用过程中与传统工艺相比,其高能耗、投资大等问题也日益凸显出来,尤其陶瓷膜的一次性投资和相对高的运行成本使得许多矿井水企业望而却步。因此提高陶瓷膜的处理效率,降低陶瓷膜的运行成本便成为陶瓷膜在矿井水处理领域的一个关键。具体内容利用膜分离技术处理矿井水,并且在现有技术基础上,增加加酸调PH值和通入气体强化膜过滤工艺来控制膜过程中的膜污染,以此提高膜过程中的渗透通量,从而提高膜过滤效率。采用这种工艺,不但提高了出水水质和渗透通量,而且提高了矿井水的浓缩倍数,浓液中的矿井水固体浓度得到提高。从而降低了投资和运行成本,给矿井水的处理带来了显著的经济和环境效益。传统的矿井水处理悬浮物的工艺,多采用絮凝沉淀加多介质过滤的方法,这些方法对成熟的水质稳定的煤矿矿井水处理是有效果的,但对于初次开采且水质不稳定的矿井水就显得难以处理,一方面矿井水中固含物颗粒比较细小,粒径分布大部分集中在7μm,难于沉淀和过滤,另一方面矿井水中铁含量高的物质在矿井水中形成胶体,采用常用的絮凝工艺难以沉降,即使沉降也增加了絮凝剂用量,延长了沉降时间,从而使得采用原有工艺除固含物效果不是很理想。而南平陶瓷超滤膜是属于高精度级别的过滤,对于悬浮物的去除具有其独特的去除能力,因而是一个理想的分离手段。但与传统工艺相比,陶瓷膜由于投资大、运行成本高等因素而迟迟不能用于矿井水的处理。

较为优选的水解参数是:蝇蛆粉与水的质量比优选是1:20-1:30,水解使用的酶优选是胰蛋白酶、木瓜蛋白酶、碱性蛋白酶中的一种,水解温度45-55℃,水解时间50-70分钟第三步中,水解物首先需要通过粗过滤器去除其中的大颗粒杂质,这主要是蝇蛆皮,可以防止微滤膜的污染、提高产品纯度,粗过滤器可以是常规的滤布、砂滤等。微滤膜进一步地对滤液进行过滤,除去水解液中的胶质、油脂等,可以提高产物的纯度、减小产物中的油脂含量、灰分;由于陶瓷膜的表面性质亲水性非常强,水解后物料中的带有的油脂与陶瓷膜的表面有较强的排斥力,不易透过膜层、截留率高、而且不易在表面形成污染、易清洗、再生。经过大量试验摸索,微滤膜的平均孔径的优选范围是200-500nm,如果孔径太大,会导致产物的纯度下降,灰分、油脂等杂质含量偏高,如果孔径太小,会使过滤通量降低,而且会使一部分蛋白质被截留,导致产品得率降低。陶瓷微滤膜的材质优选是氧化铝、氧化锆、氧化钛中的一种。在微滤过程中,跨膜压差的选择与微滤膜的平均孔径、过滤通量、产物纯度都有着相互影响的关系,如果跨膜`压差过大,会导致一部分胶体受压后穿过膜孔达到渗透侧,影响产品纯度,如果跨膜压差过滤,则会导致过滤通量过小,经过大量试验的摸索,优选的跨膜压差范围是0.05-0.3MPa。过滤过程中的pH的改变会与蛋白产生电荷相互作用,会影响到蛋白存在的形态,进而会影响到过滤通量和蛋白的截留率,优选的PH范围是6.0-7.0。膜面流速会影响到过滤通量,优选的范围是I-5m/s。过滤温度优选是40-500℃,浓缩比优选是料液浓缩6-8倍。第四步中,超滤的作用是实现水解蛋白的浓缩并与多肽、氨基酸的分离,由于多肽、氨基酸带有一定的苦味,因此需要对超滤的工艺参数进行优化,如果超滤膜的平均孔径过大,会导致蛋白质不能被完全截留,导致产物回收率的损失,如果超滤膜的平均过小,不仅会导致过滤通量太小,没有工业实用价值,而且会导致多肽、氨基酸等组分被截留,会使回收蛋白产生苦味;超滤的跨膜压差也是需要进行大量试验摸索,超滤膜的平均孔径优选是20-50nm,南平陶瓷超滤膜的材质选氧化锆、氧化钛中的一种。在超滤的过程中,跨膜压差对产物的收率、含量也有影响,由于蛋白质是具有一定受压性的大分子物质,如果跨膜压差过大时,会有一部分大分子蛋白质透过膜孔进入到渗透侧,如果跨膜压差过小,过滤通量则会偏小,经过大量试验摸索,跨膜压差优选0.2-0.4MPa。