新闻中心

品质好的呼伦贝尔陶瓷超滤膜价格

* 来源: * 作者: * 发表时间: 2021-05-12 4:54:17 * 浏览: 4

机油废水AuST等通过聚合溶胶路线制备TiO2-ZrO2复合纳滤膜,通过调整钛锆前驱体的比例,制备出不同分离精度的纳滤膜,对染料“直接红”的截留率均大于95%,并且相比较于纯TiO2和ZrO2纳滤膜,具有较高的相转化温度和热稳定性2修饰技术溶胶-凝胶法制备小孔径超滤膜已经商业化,为了进一步提升膜的渗透与分离性能,研究者们也一直研究减小陶瓷膜孔径和改善孔径分布的修饰技术。实现陶瓷膜的修饰可以采用化学气相沉积法、超临界流体沉积技术、原子层沉积技术和表面接枝技术。这些调控孔的手段不仅可以修复可能存在的大孔缺陷,提高膜的稳定性,还可以进一步减小膜的孔径,提高膜的分离精度。1化学气相沉积法修饰陶瓷膜孔径采用化学气相沉积法(CVD)在多孔基底表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及渗透性能,是一项非常有效的手段。lABrOPOulOS等在573K温度下,采用循环CVD的方法,成功地将SiO2膜平均孔径由初始的1nm减小至0.56nm。lin等采用CVD法对平均孔径为4nm的γ-Al2O3陶瓷膜进行修饰,制备出厚约1.5μM,孔径范围为0.4~0.6nm的SiO2膜。fer-nAnDeS等在多孔石英玻璃上通过CVD沉积硅烷化的四氯化硅溶液,修饰后的多孔玻璃孔径由初始的4.4nm减小至2nm。CVD的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性,目前尚处于较多实验室的基础研究阶段。2超临界流体沉积技术修饰陶瓷膜孔径超临界流体沉积(SuPerCriTiCAlfluiDDePOSiTiOn,SCfD)技术是以超临界流体为溶剂(如SC-CO2),携带陶瓷前驱物沉积在多孔陶瓷的孔隙中,是一种修饰陶瓷膜的路线。通过降低压力,陶瓷前驱物在超临界流体中的溶解度减小并在孔中沉积下来,从而使陶瓷基体孔径减小。

电镀废水预处理生产工艺流程见说明书附图1陶瓷滤芯陶瓷膜陶瓷膜过滤器。

盐水精制处理4、集成工艺对嗅味物质、EDCs和PPCPs的去除嗅味物质、EDCs和PPCPs在原水中含量很低,浓度在ng/L的范围,但传统工艺不能有效去除典型的嗅味物质如土臭素(Geosmin)和2-甲级异莰醇(2-MIB)在ng/L水平时已能影响人的感官,而EDCs和PPCPs则会给人体带来未知的健康风险。臭氧和陶瓷膜的组合工艺能大幅降低此类微量有机物在水中的浓度,集成工艺对Geosmin、2-MIB、EDCs和PPCPs的去除率分别为:96%、87%、98%和98%。本研究提出的新型超滤膜工艺中将臭氧和陶瓷膜进行结合,陶瓷膜除了具有传统超滤的分离功能外,无数的陶瓷膜膜孔相当于纳米级尺寸的微反应器。陶瓷膜材料促进了臭氧与通过膜孔的有机物进行反应,由于纳米尺度下的传质时间大幅缩短和传质效率大幅提高,传统工艺中不能去除的微量有机物得以在膜孔内得到去除。三、结论臭氧/陶瓷膜新型净水工艺出水浊度低于0.25NTU,大于2μm的颗粒数小于50个/mL,对传统污染物氨氮、DOC、THMFP和HAAFP的去除率分别为95%、73%、77%和76%,对致嗅味物质Geosmin和2-MIB的去除率分别为96%和87%,对新型微量污染物质EDCs和PPCPs的去除率分别为98%和98%。臭氧/陶瓷膜新型净水工艺将传统工艺中的多个处理单元进行有机结合,使臭氧/陶瓷膜单元具有传统工艺中的混凝、沉淀、过滤、预氧化、臭氧氧化和膜过滤等多个单元的功能,同时臭氧与陶瓷膜的结合还能在线控制膜污染,而活性炭可以进一步去除残留的有机物和氨氮。在这种情况下,处理工艺由传统的“串级”处理模式转变为“并级”处理模式,保持高的处理效率的同时大幅降低投资、运行成本和占地面积,在水厂的升级改造中具有很强的应用前景。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

生物陶瓷膜4、能将不同的分子量物质进行分类处理5、对水质的适用性强,应用的范围广。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

切削液处理超滤膜特有的微孔可有效阻留细菌、大多数病毒、胶体以及淤泥,达到分离、分级、纯化、浓缩的目的如今在工业及生活领域已获得广泛应用,用于分离、浓缩、纯化生物制品,医药制品以及食品工业中,还用于血液处理、海水淡化、废水处理、饮用水净化和超纯水制备中的终端处理。无机超滤膜特别是无机陶瓷超滤膜由于具有抗机械性强、耐高温、耐腐蚀、耐化学试剂等优点在膜分离领域应用广泛。目前陶瓷超滤膜大多用粒子烧结法制备基膜,并用溶胶-凝胶法制备反应层,在制备陶瓷超滤膜过程中都要使用多孔的支撑体作为载体,而载体的形状都是统一固定的,不能随着实际生产需要随意改变,复杂的结构形状也无法成型,从而限制了陶瓷超滤膜的使用范围。中国专利公开号CN102743979A公开了一种氧化锆陶瓷超滤膜的制备方法,本发明通过化学共沉淀法制备草酸锆溶胶,采用低温煅烧方法制备得到易分散的氧化锆粉体,然后进行研磨分散,随后加入成膜助剂、干燥控制剂、消泡剂制得涂膜液,将该涂膜液涂于多孔陶瓷膜支撑体上,经过干燥、烧结得到氧化锆陶瓷超滤膜膜层,降低了能耗,提高了超滤膜的性价比。中国专利公开号CN101791524A公开了一种非对称结构陶瓷超滤膜及其制备方法,本发明将一维纤维状材料分散于溶胶中,充分混合,加入分散剂、增稠剂、消泡剂配制成制膜液,在多孔支撑体上涂膜,经烘干后形成过渡层,在过渡层表面涂覆溶胶制膜液,将湿膜晾干、烘干,焙烧,自然降温即得非对称结构陶瓷超滤膜,该陶瓷超滤膜具有水通量大大优点。中国专利公开号CN1686920A公开了一种陶瓷微滤膜的制备方法,本方法将纳米级氧化物分散于由分散剂、增稠剂、消泡剂和防腐剂混合水溶液中,均匀形成涂膜液,再添加模板剂,用所制得的涂膜液在多孔金属或者多孔陶瓷支撑体上涂膜,并在湿膜晾干、烘干后,处理脱除聚合物模板剂,最后进行焙烧成型,得到陶瓷微滤分离膜。上述专利都是陶瓷超滤膜的制备方法,采用了不同的配方和制备方法,制得了性能优异的陶瓷超滤膜,但都使用了多孔支撑体作为膜的载体,从而制备的超滤膜具有形状单一、成型周期长、超滤膜成型方法落后的缺陷,不利于陶瓷超滤膜在实际生产过程中的需要,限制了陶瓷超滤膜的应用和发展。具体内容针对目前陶瓷超滤膜形状单一、成型困难、成型周期长的缺陷,提出了一种陶瓷超滤膜的制备方法,为实现上述目的,本发明将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行快速成型处理,制备成各种空间结构的陶瓷超滤膜,成型方法简单,实用性强,水通量大等。一种陶瓷超滤膜的制备方法的具体制备步骤如下:1)将10-20重量份的胶体颗粒用70-80重量份溶剂在常温下边搅拌边进行溶解,搅拌速度50-80r/min让胶体颗粒在溶剂中形成分散均一、稳定的溶胶;2)将步骤1)得到的溶胶与2-5重量份的造孔剂一起加入到行星式球磨机中,在300-350r/min的转速条件下充分研磨、分散、混合20_30min后出料,进行抽滤得到混合物;3)将步骤2)得到的混合物放入高温烧结炉中,在600-800°C的温度下烧结l_2h,常温冷却后出料,再用行星式球磨机进行研磨,然后过筛,得到多孔陶瓷微粒;4)根据实际生产情况的需要,对陶瓷超滤膜在厚度、形状、空间结构上的要求进行分析,利用计算机建立数字模型,编写三维快速成型的执行程序和命令;5)将步骤3)得到的多孔陶瓷微粒加入到粉末烧结激光快速成型机的料槽中,用计算机导入步骤4)编写好的执行程序和命令,粉末烧结激光快速成型机在计算机的自动控制下进行三维快速成型,制得不同形状、立体结构、厚度的陶瓷超滤膜。上述一种陶瓷超滤膜的具体制备步骤1)中,所述的胶体颗粒为氧化铝、氧化钛、氧化锆、氧化硅溶胶中的一种或多种;所述的溶剂为去离子水;所述的造孔剂为直径为IO-1OOnm的纳米碳酸钙、纳米碳酸镁中的一种或两种。

与传统多孔管陶瓷材料相比,这种具有孔梯度结构的陶瓷膜材料具有过滤精度高、过滤阻力小、清洗再生效果好等优点,实现了传统多孔陶瓷材料技术升级90年代后期,随着国外陶瓷超滤膜、纳滤膜技术的发展,国内相关单位也开始开展了用于错流过滤的多通道陶瓷材料的研究开发工作。其中,南京工业大学研究团队,最早完成了多通道陶瓷微滤膜、超滤膜、纳滤膜的研究开发工作。这种多通道陶瓷膜材料主要是以高纯氧化铝(或刚玉砂)为原料,首先采用挤出成型工艺制备孔径3~5um多通道(包括单通道、7通道、19通道、37通道等)管状陶瓷膜支撑体,然后在支撑体通道内表面采用粒子烧结工艺或溶胶-凝胶工艺制备一层或多层膜过滤层,膜层孔径从0.8um到几个纳米不等,膜层材料主要有氧化铝质、氧化钛质、氧化锆质或其复合材料。特殊的通道结构设计、光滑的膜表面、较高进一步拓宽了产品应用领域。目前,国内在多通道陶瓷膜材料的研究及开发应用方面已达到较高水平,在膜材料制备、抗污染性能研究、膜材料修饰与复合技术、应用开发方面也都取得了较大进展,多通道陶瓷膜材料在目前国内陶瓷膜材料领域占有较大比重。进入21世纪以来,随着国家节能减排政策实施,高温气体净化技术对先进膜过滤材料的需要,具有耐高温、耐高压、过滤效率高、适用范围广的高温陶瓷膜材料引起国内重视。山东工业陶瓷研究设计院也在多年从事陶瓷膜材料研究开发基础上,从上世纪90年代末开始,开展了高温陶瓷膜材料的研究开发工作。先后采用热浇注成型工艺、挤出成型工艺以及等静压成型工艺先后完成了刚玉质、堇青石质以及碳化硅质陶瓷及陶瓷纤维复合膜材料的研究开发。其中以多孔堇青石陶瓷材料为支撑体,以莫来石-硅酸铝纤维为复合膜过滤层的堇青石质陶瓷纤维复合膜材料与其它多孔陶瓷材料相比,具有气孔率高、过滤阻力小体积密度小、耐高温性能优良等优点,可用于700℃以下各种高温气体(烟尘)净化,过滤精度小于1um,过滤阻力小于2000Pa,净化后气体杂质浓度一般小于10mg/N·m3。产品可广泛应用于冶炼、建材、焚烧炉等高温烟尘净化领域。

陶瓷膜因其耐高温、耐酸碱、使用寿命长、占地面积少和容易再生等特性,用于油田采出水的处理具有明显优点目前,国内外已有一些无机膜处理油田采出水用于外排或回注的报道,但采用的膜孔径基本在200nm以上,其出水水质不能或难以稳定地达到低渗透层回注水质A1级要求。为此,作者采用孔径为100nm的陶瓷超滤膜对大庆油田采出水进行试验研究,考察其出水水质及适宜的操作条件。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

在膜催化反应中,以分子筛膜以及离子、电子混合导体膜有发展前途制备分子筛膜必须有完整无缺陷的纳米级孔径膜,即超滤膜;而混合型导体膜也希望在多孔载体上形成,以提高膜渗透性。因此,无机超滤膜的制备技术是膜催化反应的基础之一,其工业化是膜催化反应工业应用的必备条件。陶瓷滤芯陶瓷膜陶瓷膜过滤器。