陶瓷滤芯陶瓷膜陶瓷膜过滤器
云浮陶瓷膜成套设备在某种程度上,支撑体的制备直接关系到无机膜的工业化生产陶瓷滤芯陶瓷膜陶瓷膜过滤器。
云浮金属悬浮物废水附图说明图1是本发明工艺流程图;附图的主要元件说明:1-调节池,2-陶瓷膜循环罐,3-陶瓷膜循环泵,4-云浮陶瓷膜组件,5,7-控制阀,6-板框压滤机,8-陶瓷膜清液罐a-矿井水,b-酸,C-调节池上清液,d-气体,e-陶瓷膜浓液,f-板框压滤机污泥,g_板框压滤机清液,h-高固含量的浓缩液,1_陶瓷膜清液,j_产水,k-调节池沉淀污泥。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
云浮垃圾渗滤液预处理膜是一种高分子化学材料,它有无数个只能用微米甚至纳米计算的小孔,既有分离、浓缩、净化和脱盐功能,又有高效、节能、环保、分子级过滤等特征膜技术发明之后便广泛运用于食品加工、水质净化、环境治理、制药工业、化工与石油化工等领域,用来实现产品的净化分离。陶瓷膜就是由经过高温烧结的陶瓷材料制成的分离膜。由于具有独特的耐性,其一进入市场便成为膜领域发展最为迅速、也最有发展前景的品种之一。 到1989年底,南京工业大学徐南平博士才开始了在陶瓷膜领域的艰难探索。中国在陶瓷膜领域不仅打破了西方的封锁与垄断,而且依靠自主创新达到了国际先进水平。 膜分离被认为是一种高效节能的新型分离技术,是解决人类面临的能源、资源、环境等重大问题的有效手段。有资料显示,21世纪初,全球膜及其装备的年销售量超过100亿美元,年增长率在20%左右。甚至有专家预言,21世纪膜技术以及膜技术与其他技术的集成技术将在很大程度上取代传统分离技术,达到节能降耗、提高产品质量的目的,极大地推动人类科学技术的进步,促进社会可持续发展。膜技术的应用将涉及化学工业、石油与石油化工、生物化工、食品、电子、医药等行业,以膜技术为核心开发的净化水和净水设备将深入到千家万户。 徐南平填补中国陶瓷膜技术空白其实,早在20世纪40年代,美国科学家就掌握了陶瓷膜技术,但那时这种技术只用于高端领域,属于国家机密。
云浮电镀废水预处理无机膜由于具有很多优点,如耐腐蚀性、耐高温、耐生物降解性、易清洗、寿命长等,正日益受到广泛关注.20世纪80年代初日本汉方制剂专利中已采用微滤澄清水煎液再超滤除杂的工艺.目前国内在中药制剂方面也有研究和应用.我们采用南京化工大学膜科学技术研究所研制的陶瓷微滤膜,研究澄清中药黄芩提取液的陶瓷膜过滤技术,取得了良好的效果.实践证明,无机膜微滤技术是一种现实可行的技术,为中成药工业的技术革新提供了一条全新的、切实可行的途径.1实验1.1仪器与试药1.1.1仪器IM-1-1型云浮无机陶瓷膜微滤机(滤膜为19通道内管式陶瓷微滤膜,主要成分为氧化锆、氧化铝,内径8mm,外径12mm,管长1000mm,膜平均孔径0.2m,南京化工大学膜科学技术研究所研制);Agilent1100高效液相色谱仪,HP1100四元泵,HP1100紫外二极管矩阵检测器,HP1100自动进样器,ChemStation色谱工作站(美国Agilent公司).1.1.2试剂甲醇(色谱纯);乙腈(色谱纯);磷酸(A.R.);水为自制高纯水.1.1.3药材及对照品黄芩购自昆明市药材公司,经鉴定为中国药典2000版一部正品;黄芩苷购自中国药品生物制品研究所.1.2实验方法1.2.1药材提取方法以市售黄芩5kg为原料,水煎2次,次加水10倍量,第2次加水8倍量,每次沸腾1.5h后用4层纱布趁热过滤,滤液合并后作为微滤原料.滤液外观呈黑绿色,悬浮物多,浑浊不透明.1.2.2微滤方法实验时采用单根膜管,微滤机采用错流过滤方式,流程见图1.把料液加入储槽,经离心泵循环打入膜组件进行过滤,渗透液由膜组件侧面出口流出,截留液流回储槽,流速及过滤压差由阀门调节控制,流速由流量计读数换算得到,过滤压差由进口压力p1和出口压力p2相减得到.实验首先测定了2种不同膜材料下药液微滤时间对膜通量的影响(以便找出合适的膜材料);之后选择合适的膜材料测定不同流速、不同过滤压差对料液膜通量的影响(以便确定出合适的操作条件);在合适的条件下将药液进行循环微滤,待药液微滤至原液的80%时,加入适量的蒸馏水继续微滤,直到微滤液收集到原液质量的95%时,停止微滤.截留液称质量或量取体积,取样后弃去;微滤液称重或量取体积,取样后浓缩备用.最后进行膜污染的清洗实验.1.2.3定量分析方法黄芩苷采用高效液相色谱法测定,条件如下:色谱条件:参照中国药典2000年版一部黄芩项下HPLC含量测定方法,安捷仑EclipseXDB-C18柱(直径为5m,4.6mm150mm),流动相为V(甲醇)V(水)V(磷酸)=47530.2),检测波长为280nm,流速为1.0mL/min.对照品溶液的制备:精密称取黄芩苷对照品适量,加甲醇制成1mg/mL的溶液,即得.标准曲线回归方程为:A=32365.56-1997.75,r=0.9999(n=5),其中为黄芩苷质量浓度,单位g/mL;A为积分面积.供试品溶液的制备:精密量取黄芩提取原液、经过陶瓷膜处理的过膜液各0.5mL,加甲醇1.0mL摇匀,离心,取上清液即得.测定法:分别精密吸取对照品溶液与供试品溶液各5L,注入液相色谱仪,测定,即得.固形物含量依药典法(2000年)进行测定.2结果与分析2.1采用不同的膜材料考察微滤时间对膜通量的影响图2为22、过滤压差0.10MPa、流速5m/s条件下,采用不同膜材料Al2O3,ZrO2,考察膜通量随时间的变化关系,结果如图2所示.从图中我们可以看到,ZrO2的性能优于Al2O3.膜的材料性质包括膜的化学稳定性、热稳定性、表面性质及机械强度等,它对膜的分离性能影响很大.就ZrO2膜来说,0~10min,通量下降较快;10~60min,通量维持在160L/(hm2)以上;1h以后通量平稳下降.造成通量下降的主要原因是料液与膜之间相互作用产生吸附,改变了膜的特性,形成膜孔道的堵塞,同时料液中难溶性的固形物会在膜表面或膜孔中沉积,加重了膜的污染;随着过滤的进行,膜面错流的剪切作用使膜面滤饼层达到动态平衡,过滤阻力趋于稳定,这样膜通量就会平稳、缓慢地下降2.2膜面流速对膜通量的影响膜面流速是影响膜通量的主要因素之一.图3为ZrO2膜、22、过滤压差0.08MPa的条件下不同流速对膜通量的影响.从图3可见,当流速小于4m/s时,增大膜面流速可以有效地增大膜通量;当流速大于4m/s时,增大膜面流速反而会使膜通量减小.这是由于较高的剪切速度有利于带走沉积于膜表面的颗粒、溶质等,减轻膜污染,减轻浓差极化的影响,因而可以有效地提高膜通量[5].但过高的膜面流速会使单位时间循环量增大而膜通量减小.本体系最适宜的流速为4m/s.2.3操作压差对膜通量的影响操作压差也是影响膜通量的最主要的因素之一.图4为ZrO2膜、22、膜面流速为4m/s条件下测得的不同操作压差下的膜通量值.图中表明,当压差在0.10MPa以下时,操作压差与膜通量呈正比关系,膜通量随压差的增大而增大;当压差超过0.10MPa时,膜通量随压差的增大反而减小.这是因为无机膜过滤过程中存在着一个临界压力,在临界压力之下,膜通量与操作压差呈正比关系;而在临界压力之上,由于浓差极化等因素的影响,过滤压差与膜通量不再存在正比关系[5].所以,通过增大压力来增加膜通量要受到一定的限制,同时在高压下,泵的能量消耗较高.所以在本体系中,适合的操作压差为0.06~0.10MPa.2.4膜的清洗及再生实际操作过程中,膜通量会不断下降,这就需要适时地对膜进行清洗,以延长膜的使用寿命,降低生产成本,提高产品的收率.无机膜的价格相对较高,因此确定有效且稳定的清洗方法就显得特别重要.实验中采用了强碱、强酸交替清洗的方法,并测定了膜通量的恢复率.膜通量的恢复率可由下式得到2.5黄芩苷质量分数测定结果用高效液相分别测定了微滤前后黄芩提取液中有效成分黄芩苷的质量分数,结果见表2.3结论本文提出的用陶瓷膜对黄芩提取液进行澄清过滤在工艺上是可行的,其优点在于:抗污染能力强;对料液的前处理要求不高;膜可以反复再生;杂质去除彻底,透过液澄清透明,产品质量能得到充分保证等.具体情况见表1.对于本体系来说,适宜的操作条件为:ZrO2膜、常温、膜面流速4m/s、过滤压差0.06~0.10MPa;膜的清洗和再生方便,用多种清洗剂清洗后,膜通量恢复率可达96%以上.云浮无机陶瓷膜澄清中药提取液的研究尚有许多不足之处,如膜通量存在衰减问题、膜的污染速度较快、对某些成分有吸附作用等,这些都还在探讨、研究中.但是,该技术的显著优点是不可忽视的,其应用前景也是十分广阔的.陶瓷滤芯陶瓷膜陶瓷膜过滤器。
云浮工业陶瓷膜 是一家以工业膜过滤系统研发、生产、销售及配套安装施工服务为一体的专业化企业公司先进的微滤、超滤、纳滤及反渗透膜过滤系统广泛应用于食品饮料除菌澄清过滤、果(蔬)汁澄清过滤、植(药)物深加工、水(海)产品深加工、农产品深加工、生物制药、生物发酵、超细粉体清洗纯化、精细化工、水处理和环保等行业。如有需要,随时致电联系。。
未来陶瓷膜领域的发展趋势将集中在以下5个方面:(1)进一步提高陶瓷膜材料的分离精度及其分离稳定性,使其在液体分离领域实现纳滤级别的连续高效运行,在气体分离领域实现多组分气体的高效分离;(2)研制具有大孔径及高孔隙率的耐高温云浮陶瓷分离膜材料,使其在资源的高效利用及环境保护等领域实现高温气固分离过程的长期稳定运行;(3)实现陶瓷膜表面性质的调控,通过改变其表面亲疏水性及荷电性、生物兼容性等以拓展陶瓷膜的应用领域;(4)实现陶瓷膜的低成本化生产,结合构建面向应用过程的膜材料设计与制备方法,解决陶瓷膜推广应用的瓶颈问题;(5)研制耐强酸强碱等苛刻体系的膜材料,提高膜材料分离性能的稳定性,拓展其在过程工业的应用范围,多孔陶瓷膜制备技术研究必将进一步引领和推动陶瓷膜技术及产业的发展,进而实现制备技术从理论到应用的转化,早日攻克困扰陶瓷膜技术发展的热点及瓶颈性难点,将缓解过程工业面临的资源,能源与环境的瓶颈压力陶瓷滤芯陶瓷膜陶瓷膜过滤器。
一种催化加氢用催化剂制备方法,属于催化技术领域所述催化剂以陶瓷膜为载体,首先采用氨基硅烷对膜表面进行改性,然后用金属纳米颗粒溶胶浸渍制得催化剂。优点在于将纳米级催化剂颗粒负载于硅烷改性的陶瓷膜表面,避免了催化剂与产品后续难分离的问题。催化剂制备工艺简单,活性高,稳定性好,可广泛应用于加氢反应过程。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
背景技术陶瓷膜制氧和中空纤维膜制氮均为成熟技术,目前,陶瓷膜制氧分离装置输出的气体为纯氧,其废气出口将高温高压的富氮气体作为废气排至大气;中空纤维膜制氮分离装置输出的气体为富氮气,其废气出口将分离出的富氧气作为废气排至大气其缺点是:中空纤维膜制氮分离装置以空气为原料气,制氮效率比较低。另外,独立的两个分离装置导致引气量加大和系统管路复杂,导致体积和重量大。具体内容提出一种陶瓷膜与中空纤维膜氧氮分离装置,以便利用陶瓷膜制氧分离装置的废气作为制氮分离装置的原料气,提高制氮效率;同时,节省引气量,简化系统结构,减小体积和重量。一种陶瓷膜与中空纤维膜氧氮分离装置,其特征在于,它由过滤器1、加热装置2、陶瓷膜装置3、热交换器4和中空纤维膜制氮装置5组成;过滤器I的进气口与空气源连通,过滤器1的出气口通过管路与加热装置2的进气口连通,加热装置2的出气口通过管路与陶瓷膜装置3的进气口3a连通,陶瓷膜装置3的低浓度富氮气出气口3b通过管路与热交换器4的进气口连通,陶瓷膜装置3的氧气出气口3c输出氧气,热交换器4的出气口通过管路与中空纤维膜制氮装置5的进气口连通,中空纤维膜制氮装置5的高浓度氮气出气口5b输出高浓度氮气,中空纤维膜制氮装置5的废气出口5c与大气连通。优点是:提出了一种陶瓷膜与中空纤维膜氧氮分离装置,能利用陶瓷膜制氧分离装置的废气作为制氮分离装置的原料气,提高了制氮效率;同时,节省了引气量,简化了系统结构,减小了体积和重量。本发明的一个实施例,经试验证明,制氮效率提高了40%以上。附图说明图1是本发明的原理结构框图。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
2、陶瓷膜从膜层到微孔支撑体孔径由小逐渐增大陶瓷膜层的平均孔径2.7μm,最小和孔径分别为0.9和8.9μm,孔隙率37.3%;支撑体的平均孔径35.8μm,最小和孔径分别为3.6和45.7μm,孔隙率40.8%;3、陶瓷膜过滤器因为具有独特的结构特点,能高效的去除废水中的污染物质,容易再生;在投资费用、使用寿命方面都有着传统过滤器无法比拟的优势。4、陶瓷膜过滤器的操作条件对膜的分离性能有很大的影响,从实验得到陶瓷膜过滤的操作条件为,原水浊度在150NTU,操作压力控制在0.2MPa左右,流量在1.8m3/m2.h,反冲周期为4h或膜压差达到0.02MPa启动反冲,反冲压力应设定在0.2MPa,反冲洗时间为10min。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
另有研究者利用硅改性后的TiO2负载于商品陶瓷膜的表面,形成具有光催化作用的复合膜在紫外辐照条件下,掺杂硅的复合膜对活性红染料的降解速率常数是普通TiO2膜的2.7倍,显示了强大的催化氧化能力。改性后的锐钛矿晶体孔隙率和表面积增大,较大的表面积和孔隙率可以增加过滤通道中染料与锐钛矿晶体的接触几率,而紫外辐照下,锐钛矿晶体正是催化降解染料的部位。因此,传统的陶瓷膜过滤在经过膜面功能化或与其他先进技术相结合后能实现更强大的处理能力。陶瓷膜及其组合工艺在饮用水中的应用正在日益增多。陶瓷膜组合工艺的效果优于单独陶瓷膜工艺的。陶瓷膜与混凝组合工艺是目前研究最多、应用最广泛的工艺之一。陶瓷膜与臭氧联用的组合工艺代表了当前研究和应用的热点,具有巨大的发展潜力。陶瓷膜与光催化氧化组合工艺是较新的研究方向,其在大规模工程应用可能还需要进一步创新。陶瓷滤芯陶瓷膜陶瓷膜过滤器。