新闻中心

专业的厦门陶瓷膜厂家

* 来源: * 作者: * 发表时间: 2021-03-29 1:25:16 * 浏览: 21

吸塑包装所述陶瓷膜过滤器包括两个集液腔和至少两对两两相串联的陶瓷膜组件所述陶瓷膜过滤器的清液管路一还连接到用于对陶瓷膜过滤器的膜进行反冲而防止膜堵塞的反冲罐。该系统中设有用于对系统整体管路及设备进行循环清洗的装有清洗液的清洗罐。本实用新型采用无机陶瓷膜精滤系统,可直接过滤高温的浸提茶水,可以有效去除大分子的无效成分,如杂蛋白、多糖、胶体、纤维以及各类微生物、悬浮物SS、微小颗粒或异物等,提高目标产物的纯度;本实用新型的无机陶瓷膜系统采用“双泵三罐二进四出二循环”模式,同时无机管式陶瓷膜可反向冲洗再生能力强,提高了回收率。本实用新型处理后的茶产品成分不但能够能够保持产品茶成分的色、香、味俱佳,而且生产成本相对传统方法较低,且工艺过程中污染物排放少,具有很大的技术、经济效益。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

厦门高品质陶瓷膜批发实用新型内容本实用新型的目的在于克服现有技术的不足,提供一种通道横截面呈齿形的陶瓷膜,以便在提高单位体积膜有效过滤面积的同时,使液体在过滤过程中产生紊流或扰流而形成不稳定流动,从而减少污染物在膜通道表面的沉积,提高膜的渗透性能和过滤效率本实用新型的目的通过以下技术方案予以实现:本实用新型提供的一种齿形通道陶瓷膜,其通道的内壁均布有呈纵向的沟槽,所述通道的横截面其边沿呈齿形排布,使得陶瓷膜通道的内壁具有起伏状,不仅扩大了内壁面积,而且可形成不稳定流动(紊流或扰流)。进一步地,本实用新型所述各齿形相互连接,也即通道内壁均是由齿形边线(沟槽的面)构成而呈连续起伏,从而进一步增加了紊流或扰流的不稳定性。上述方案中,考虑到所形成紊流对过滤的影响和作用、以及生产实施和成材率等因素,本实用新型所述齿形呈角状,所述通道的横截面呈星形,以4~8个角为宜。优选具有6个角的星形,可减少成型或热处理过程中陶瓷体由于应力不均导致的开裂现象。此外,本实用新型所述通道其横截面的各齿形的排布可以呈圆型而具有外接圆和内接圆,所述外接圆直径∶内接圆直径=1.5~1.8。本实用新型具有以下有益效果:(1)与传统的圆形通道相比,本实用新型陶瓷膜通道为非圆形,通道的横截面呈齿形,内壁呈起伏状,显著增加了单位体积膜有效过滤面积,从而有利于提高膜的过滤效率。(2)非圆形的通道有利于在过滤分离时使液体产生紊流,减少了污染物在膜通道表面的沉积,从而提高了膜的渗透性能。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

厦门含碱废水回用这样,基本实现零排放此工艺的优点是能耗少,操作简单,占地少,可回收有用物质陶瓷滤芯陶瓷膜陶瓷膜过滤器。

电镀废水预处理办法所以果汁的澄清在果汁饮料的生产中是一个关键的步骤而膜分离技术能够很好的除掉果汁中的这些物质,所以现已广泛的应用于果汁的澄清,其中有机膜会破坏果汁的颜色和口味,而无机微滤膜不但可以获得较高的渗透能量和截留率,而且可以减少蛋白质在膜表面的吸附,减轻膜污染;此外由于无机膜本身所具有的理化稳定性好、抗微生物能力强、机械强度高、耐高温、孔径分布窄、分离效率高、使用寿命长等优点以及可以进行高压反冲和蒸汽在线消毒,因而在果汁饮料工业中有着广泛的应用前景。八十年代初无机陶瓷膜已成功的在法国奶业和饮料业7果汁、葡萄酒、苹果酒、啤酒,得到了推广应用,澄清的果汁品质优良,比传统的分离、硅藻土过滤加巴氏灭菌生产的果汁更具有芳香味。国内邢卫红等人应用无机膜对甘蔗汁、草莓汁及南瓜汁的澄清过滤进行了初步尝试,取得了较好的结果,为纯天然果汁饮料的澄清提供了一条经济切实可行的途径OEP。3在蛋白质的制备和浓缩中的应用蛋白质是天然的大分子物质,其分子量在几万到几百万不等。有一定截留分子量的超滤膜可以很好的截留蛋白质而使一些小分子物质通过,许多研究工作者已经把陶瓷膜超滤用在了大豆蛋白的加工制备工艺中。其大致的工艺如下:脱脂大豆粕-磨浆浸提-真空抽提-超滤浓缩-中和-喷雾干燥-成品膜对蛋白质的截留率高达93.9%,经浓缩后的蛋白质回收率达93.9%,明显高于酸沉淀法。4在功能性因子的分离提取中的应用随着功能性食品的开发,功能性因子的研究也越来越成为众多食品及药学科研单位及相关的大专院校的研究热点。而功能性因子大多都存在于天然草本植物的提取液之中,与一些蛋白质、淀粉、糖等大分子物质共存,给其分离带来了很大的难题。而使用超滤及微滤陶瓷膜分离技术能够很好的解决这一难题。江南大学食品学院周惠明博士就是采用了由荷兰生产的陶瓷膜,对小麦胚芽水溶性提取物中的谷胱甘肽的分离进行了试验研究,他分两步分离的过程,先使用600nm的陶瓷膜分离,然后再使用5nm的陶瓷膜进行过滤。

陶瓷膜过滤分离设备混凝+陶瓷膜微滤工艺的操作条件下直接处理焦化废水并对各种污染物质的去除情况进行了研究由陶瓷膜过滤器处理焦化废水时膜通量随时间的急剧衰减的情况得知陶瓷膜的污染对整个工艺的造成严重的影响。对陶瓷膜管的污染机理、影响因素和抗污染机制进行了初步的探讨和研究,最后从理沦和实践上都对膜污染进行了比较和分析,并对不同的清洗方法和清洗效果进行了讨沦。得出了以下结论:(1)在操作条件下,采用混凝-微滤法时处理焦化废水其平均浊度去除率、脱色率、脱油率和COD去除率分别高达95%、80%、90%和81%,表现出对焦化废水处理的高效性,也很好的体现了混凝与陶瓷膜微滤两种废水处理方案的兼容性与互补性。(2)纯水清洗有着自身的优势,过滤前期应尽量纯水清洗,当纯水冲洗对膜通量恢复率没有较大改善的时候应选用合适的化学清洗剂清洗。实验得知,采用单种药剂对陶瓷进行清洗时,盐酸、氢氧化钠、次氯酸钠三种清洗剂对陶瓷膜的清洗效果较好,一次清洗后膜通量恢复率达到70%以上。由此可知,焦化废水中对陶瓷膜产生污染的物质中,焦油类及有机物等占有很大的比例。(3)在单步化学清洗工艺中,盐酸、氢氧化钠、次氯酸钠、EDTA和SDS的清洗浓度分别为1.1%,1.5%,0.6%,0.4%和2.0%;膜通量恢复率为72.1,80.0,83.3,55.9和58.2。(4)在连续两步化学清洗工艺中,选用0.6%NaClO(步)+1.5%NaOH(第二步)作为清洗剂的清洗效果相对较好,其膜通量恢复率达到了88.3%,与单独使用0.6%NaClO和1.5%NaOH作为清洗剂单步清洗效果都要好。结果表明在被污染的陶瓷膜内有机污物和油污相互覆盖用次氯酸钠和氢氧化钠对陶瓷膜进行两步清洗可以获得较好的清洗效果。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

综上所述,所述的陶瓷膜在线清洗装置安装有臭氧发生器,将臭氧与清洗液通过涡流泵叶轮的强剪切作用形成含有微气泡的均匀混合液,利用臭氧的强氧化性来分解膜污染物、杀菌,恢复陶瓷膜水通量,可以应用于生物制药、食品饮料等领域,具有下述优点:1)较传统的反复酸碱清洗法相比,清洗过程简单;2)提高清洗效率,可在较短时间内有效、彻底恢复水通量;3)连续性进臭氧,清洗液臭氧浓度稳定,可保证清洗效果;4)臭氧具有快速杀菌作用、脱色功能;5)清洗液中含有大量气泡有利于膜表面的污垢松动陶瓷滤芯陶瓷膜陶瓷膜过滤器。

无机陶瓷膜以其耐高温、耐酸碱、使用寿命长、分离能力好、分离效率高、过滤精度高等优点正在逐步应用于发酵液等化工、医药、生物、食品等行业陶瓷滤芯陶瓷膜陶瓷膜过滤器。

陶瓷过滤器下面结合附图和实施例对本实用新型作进一步的描述:图1为本实用新型的结构示意图;其中:1过滤界面;2陶瓷膜;3陶瓷过滤器实施例:如图所示,一种复合陶瓷膜的陶瓷过滤器,所述陶瓷过滤器的过滤界面上至少有一个面复合有陶瓷膜;所述陶瓷过滤器的两个面上均复合有陶瓷膜。本实用新型中的陶瓷膜主要是利用不同颗粒的刚玉材料,通过加入适量的熔剂、助溶剂及悬浮剂,经混合后用浸镀法在大孔径的陶瓷过滤器上进行镀层处理,后经1350度高温烧结而成,使其既有很高的透过性又有很业精细的过滤性。由于熔剂在高温的作用下融解粘附刚玉颗粒周围,次序却后熔剂使刚玉颗粒叠加互相接触部分被烧结在一起,空隙部分则形成相互贯通的微孔,而微孔的大小主要取决于刚玉颗粒的大小,颗粒越大,孔径越大,透过性越高,反之则相反,并且多孔刚玉过滤材质越厚,透过性越差,反之则越好。本实用新型即利用这些特性,使陶瓷膜和陶瓷过滤器复合为一体,达到优越的透过性和精细的过滤效果。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

各管口上安装相应规格的阀门供调节水量三个室内都设有人孔安装和检修之用。从外形上来看,与传统的高速过滤器很相近。陶瓷膜过滤器核心部件是陶瓷膜过滤管,它是以稀土、氧化锆等多种原料进行科学配方,经过素烧,粉碎、分级、成型、制膜等工序,通过高温煅烧形成一种立体网孔结构微孔膜。陶瓷膜过滤管具有机械强度高、耐酸、耐碱、耐高温,再生能力强等特点。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

膜是一种高分子化学材料,它有无数个只能用微米甚至纳米计算的小孔,既有分离、浓缩、净化和脱盐功能,又有高效、节能、环保、分子级过滤等特征膜技术发明之后便广泛运用于食品加工、水质净化、环境治理、制药工业、化工与石油化工等领域,用来实现产品的净化分离。陶瓷膜就是由经过高温烧结的陶瓷材料制成的分离膜。由于具有独特的耐性,其一进入市场便成为膜领域发展最为迅速、也最有发展前景的品种之一。到1989年底,南京工业大学徐南平院士才开始了在陶瓷膜领域的艰难探索。经过二十多年的不懈奋斗与努力,中国在陶瓷膜领域不仅打破了西方的封锁与垄断,而且依靠自主创新达到了国际先进水平。膜分离被认为是一种高效节能的新型分离技术,是解决人类面临的能源、资源、环境等重大问题的有效手段。有资料显示,21世纪初,全球膜及其装备的年销售量超过100亿美元,年增长率在30%左右。甚至有专家预言,21世纪膜技术以及膜技术与其他技术的集成技术将在很大程度上取代传统分离技术,达到节能降耗、提高产品质量的目的,极大地推动人类科学技术的进步,促进社会可持续发展。膜技术的应用将涉及化学工业、石油与石油化工、生物化工、食品、电子、医药等行业,以膜技术为核心开发的净化水和净水设备将深入到千家万户。早在20世纪40年代,美国科学家就掌握了陶瓷膜技术,但当时的陶瓷膜技术只用于高端领域,属于国家机密。