值得推荐的厦门陶瓷超滤膜公司
高性能陶瓷膜lin等采用CVD法对平均孔径为4nm的γ-Al2O3陶瓷膜进行修饰,制备出厚约1.5μM,孔径范围为0.4~0.6nm的SiO2膜fer-nAnDeS等在多孔石英玻璃上通过CVD沉积硅烷化的四氯化硅溶液,修饰后的多孔玻璃孔径由初始的4.4nm减小至2nm。CVD的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性,目前尚处于较多实验室的基础研究阶段。2超临界流体沉积技术修饰陶瓷膜孔径超临界流体沉积(SuPerCriTiCAlfluiDDePOSiTiOn,SCfD)技术是以超临界流体为溶剂(如SC-CO2),携带陶瓷前驱物沉积在多孔陶瓷的孔隙中,是一种修饰陶瓷膜的路线。通过降低压力,陶瓷前驱物在超临界流体中的溶解度减小并在孔中沉积下来,从而使陶瓷基体孔径减小。TATSuDA等采用四异丙苯氧化钛(TTiP)为前驱物,在介孔氧化硅材料中修饰TiO2颗粒,结果表明采用SC-CO2作溶剂时,TTiP能够渗入平均孔径为3~7nm的介孔氧化硅材料中,使孔道减小。BrAS-Seur等提出采用超临界异丙醇为溶剂,在氧化铝基底上沉积钛醇盐前驱体,氧化铝基底的孔径由110nm减小至5nm。WAng等基于孔径变化的动力学方程、超临界溶液相平衡模型和经典成核理论建立了一套用于描述超临界流体渗透过程的数学模型,并通过实验使α-Al2O3的孔径分布范围变窄,并将平均孔径由110nm减小至80nm。3其他孔径修饰的新技术原子层沉积技术(AlD)是一种可以将物质以单原子膜形式一层一层地沉积在基底表面的方法。li等在平均孔径50nm基底上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,在沉积600次后,对BSA的截留率由9%升至97.1%。目前,表面接枝技术较多地用来调节膜材料的表面性质,对于具有较小孔径的膜,接枝过程也将改变膜的孔结构,达到减小孔径的目的。
罗汉果澄清上述一种陶瓷超滤膜的具体制备步骤1)中,所述的胶体颗粒为氧化铝、氧化钛、氧化锆、氧化硅溶胶中的一种或多种;所述的溶剂为去离子水;所述的造孔剂为直径为IO-1OOnm的纳米碳酸钙、纳米碳酸镁中的一种或两种上述一种陶瓷超滤膜的具体制备步骤2)中,所述的过筛是过2000-5000目的筛。上述一种陶瓷超滤膜的具体制备步骤3)中,所述的粉末烧结激光快速成型机采用选择性激光烧结成型技术,即采用C02激光器按电脑上设计好的三维图形,在计算机的控制下,把涂在工作台上的一层的打印粉末材料烧结成型的原理,是三维快速成型技术主要成型设备中的一种,主要由扫描系统、激光控制系统、加热元件、成型缸、供料系统、运动部件、冷却系统、运动控制系统、软件系统组成。利用快速成型中选择性激光烧结成型技术的原理,将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行成型处理,制成各种空间结构的陶瓷超滤膜,成型方法简单、成型周期短、实用,该陶瓷超滤膜的截留率大,孔径分布范围lO-lOOnm,在0.1Mpa的操作条件下水通量为100_200L/m3.h。突出的特点在于:1、采用三维快速成型技术,使陶瓷超滤膜成型方便、成型周期短、形状多样化,满足对陶瓷超滤膜各种形状和结构的需求。2、不需要模具,极大提高了陶瓷超滤膜的生产效率,拓宽了应用范围。3、生产过程简单,操作方便,生产成本低,易于工业化生产,应用范围更加广泛。生产工艺流程见说明书附图1。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
厦门生物陶瓷平板膜对于废油高温提纯再生,无机陶瓷超滤膜较传统工艺更有优越性废油所含污染物高达20%,这些污染物包括水、矿泥、含碳颗粒以及金属颗粒。传统的再生处理方法加大了酸和粘土的用量,这样使得酸性污泥的处理问题进一步恶化。(3)无机超滤膜不仅在液体分离方面具有广泛的应用前景,而且是气体分离膜和催化膜的基础。理想的气体分离膜具有筛分作用,其平均孔径在1nm以下,其必备条件是具有高质量的超滤膜。在膜催化反应中,以分子筛膜以及离子、电子混合导体膜有发展前途。制备分子筛膜必须有完整无缺陷的纳米级孔径膜,即超滤膜;而混合型导体膜也希望在多孔载体上形成,以提高膜渗透性。因此,无机超滤膜的制备技术是膜催化反应的基础之一,其工业化是膜催化反应工业应用的必备条件。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
钛白粉清洗因此,蝇蛆蛋白质完全可以作为优质蛋白质饲料,替代鱼粉据研究,蝇蛆蛋白粉具有抗菌、抗病毒、清除自由基等作用。利用蝇蛆开发蛋白粉及氨基酸产品,可以满足需补充高品质蛋白或氨基酸的特定人群的需要,同时也可能成为重要的蛋白质来源。因而研究蝇蛆蛋白产品深加工技术、提高产品的附加值,是非常必要而且具有实际意义的工作。中国专利CN1415757A公布了一种用酶水解法从蝇蛆中提取蛋白质和甲壳素及用甲壳素制备壳聚糖的方法,通过将蝇蛆清洗、胶磨破碎、酶解后得到滤液和滤渣,滤液经增香、浓缩、喷雾干燥后得到蛋白质,该方法提取的蛋白质收率高于60%。专利CN1377898A公布了一种提取甲壳素和生物蛋白粉的方法,通过加碱浸泡、过滤、加酸浸泡、水洗及烘干后得蛋白质粉。上述的方法提取的蛋白质虽然保留了其生物活性,但都是用滤布进行过滤,过滤精度不高,成品中含有很多无效杂质成分,因此纯度不高,此外,都是对蝇蛆内的全部蛋白进行提取,但是并不是所有的蛋白都能被人体吸收,因此要开发一种纯度高,并且能提取易被人体吸收的蛋白质的方法。具体内容提供一种蝇蛆蛋白的提取纯化方法,需要提高提取蛋白的含量和纯度、降低分离出蛋白质的苦味,且操作简单、污染小、适用于大规模生产。主要是通过陶瓷膜微滤和超滤膜集成进行分离纯化操作,采用的具体技术方案如下:一种采用陶瓷膜提取蝇蛆蛋白的方法,包括如下步骤:步、将蝇蛆洗净、烘干、研磨成粉末;第二步、将蝇蛆粉通过酶解法进行水解处理后,再灭酶;第三步、将水解液通过粗过滤器进行过滤后,滤液由陶瓷微滤膜进行过滤;第四步、将微滤膜的透过液通过陶瓷超滤膜进行过滤;第五步、将超滤膜的浓缩液进行干燥,得到蝇蛆蛋白;第六步、将超滤膜的渗透液用纳滤膜浓缩再干燥后,得到多肽、氨基酸和小分子蛋白质。提取方法主要是通过酶解的作用将蝇蛆的蛋白质大分子水解,使其更易被分离、提纯、而且更易人体吸收,另外,由于在水解过程中会产生一部分多肽和氨基酸,这一部分的水解物具有其特定的用途,而且这一部分的水解物具有较明显的苦味,需要将其从蛋白质中分离,提高产物的品质,本发明通过纳滤浓缩、干燥将其提取。水解工艺的参数包括有酶的类型、酶的用量、水解温度和水解时间等,水解工艺的不同会影响到蛋白质的水解程度、苦味的有无和大小、微滤和超滤的工艺参数、产物的收率等。
陶瓷膜设备批发代理076mm/a油田采用的采出水常规处理方法(如重力沉降、旋流离心分离、气浮和精细过滤等)均难达到这一要求。陶瓷膜因其耐高温、耐酸碱、使用寿命长、占地面积少和容易再生等特性,用于油田采出水的处理具有明显优点。目前,国内外已有一些无机膜处理油田采出水用于外排或回注的报道,但采用的膜孔径基本在200nm以上,其出水水质不能或难以稳定地达到低渗透层回注水质A1级要求。为此,作者采用孔径为100nm的陶瓷超滤膜对大庆油田采出水进行试验研究,考察其出水水质及适宜的操作条件。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
随着近10年国家洁净煤计划实施及节能减排政策的实施,高温陶瓷膜材料在国内得到一定研究和发展,高温陶瓷膜材料在高温气体净化领域的应用也越来越广泛,从冶炼行业高温烟尘净化、到一些新材料领域的高温放空气体净化、垃圾焚烧尾气净化、一直发展到高温煤气净化等高温陶瓷膜材料用于高温气体净化优点是使用温度高(900℃以下)、使用压力高(4MPa以下)、过滤效率高(99.95%)和使用寿命长(3~10年)等。可以代替滤布,用于高温、高压气体过滤等,可以解决传统滤布耐温低、易烧蚀、易腐蚀、易磨损等问题,减少气体冷却系统,提高过滤效率和余热利用效率、延长过滤设备使用周期。可以说高温陶瓷膜过滤材料的推广应用对于解决特殊领域的高温气体净化技术难题,促进冶金冶炼行业的清洁生产、节能减排,促进化工、新能源材料领域的工艺革新、减少垃圾焚烧排放物排放方面会起积极作用。尤其是在国家大力发展的煤化工产业中,煤气化及低温煤干馏工艺中产生的粗煤合成气、煤焦油气中都含有大量微细颗粒杂质,必须限度的除去,试验证明其它材料或工艺无法满足要求,而高温陶瓷过滤材料则是最理想的过滤材料之一。目前高温陶瓷膜材料已开始在国内的煤化工行业、冶炼行业、石油化工行业、垃圾焚烧及新能源材料领域推广应用。陶瓷滤芯陶瓷膜陶瓷膜过滤器。
此外,还有部分产品将根据产品特定的属性而采用不同的分类方法,在此不予说明◎陶瓷膜管、陶瓷复合膜管的基础技术参数膜孔径:1.2μm、0.8μm、0.5μm、0.2μm、0.1μm、50nm、20nm、10nm、4nm膜材质:氧化锆、氧化铝、氧化钛长度:配套可选规格耐压强度:1.0Mpa适用pH值:0~14适用温度:-10℃~150℃陶瓷滤芯陶瓷膜陶瓷膜过滤器。
王信玮等考察了溴代聚苯醚膜对甲醇/正戊烷、乙醇/正戊烷等有机溶剂体系的分离性能;Bhaumik等[9]在中空纤维膜表面涂覆聚合硅树脂制备复合膜回收甲醇和甲苯等有机溶剂;Kim等[10]和李焦丽等[11]均报道了改性膜对有机溶剂的回收效率这些研究在一定程度上实现了特定有机溶剂分离回收,但主要基于渗透汽化原理,对有机溶剂在液态下以膜净化的研究较少。陶瓷膜具有化学稳定性好、抗微生物能力强、使用寿命长、易清洗及膜组件强度大等优点,广泛应用于化工、环保、医药和食品等行业,崔鹏等以陶瓷膜微滤凹凸棒土悬浆液;Lobo等采用陶瓷超滤膜分离油水乳状液;曾坚贤等以陶瓷微滤膜处理肌苷发酵液和柑桔汁。这些工作均以水溶液为背景,少见陶瓷膜微滤溶剂油的研究报道。前期已研究了特定体系的陶瓷膜微滤行为,所得结论适用于水相介质。本工作以陶瓷膜微滤200溶剂汽油,污染膜清洗在水溶液中进行,清洗结束后装置中残存水分,可能会影响后续溶剂油微滤。因此,本工作研究不含水溶剂油和含0.5%(ω)水溶剂油的陶瓷膜微滤行为,以考察水的影响程度,同时研究操作时间、跨膜压差、错流速度、温度及铝粉含量对膜通量的影响,探讨铝粉截留率随操作时间的变化规律,优化操作参数,研究反冲操作、浓缩过程及污染膜的化学清洗。陶瓷滤芯陶瓷膜陶瓷膜过滤器。