新闻中心

专业的厦门陶瓷超滤膜厂家

* 来源: * 作者: * 发表时间: 2021-06-16 1:42:23 * 浏览: 6

活性碳中国专利公开号CN101791524A公开了一种非对称结构陶瓷超滤膜及其制备方法,本发明将一维纤维状材料分散于溶胶中,充分混合,加入分散剂、增稠剂、消泡剂配制成制膜液,在多孔支撑体上涂膜,经烘干后形成过渡层,在过渡层表面涂覆溶胶制膜液,将湿膜晾干、烘干,焙烧,自然降温即得非对称结构陶瓷超滤膜,该陶瓷超滤膜具有水通量大大优点中国专利公开号CN1686920A公开了一种陶瓷微滤膜的制备方法,本方法将纳米级氧化物分散于由分散剂、增稠剂、消泡剂和防腐剂混合水溶液中,均匀形成涂膜液,再添加模板剂,用所制得的涂膜液在多孔金属或者多孔陶瓷支撑体上涂膜,并在湿膜晾干、烘干后,处理脱除聚合物模板剂,最后进行焙烧成型,得到陶瓷微滤分离膜。上述专利都是陶瓷超滤膜的制备方法,采用了不同的配方和制备方法,制得了性能优异的陶瓷超滤膜,但都使用了多孔支撑体作为膜的载体,从而制备的超滤膜具有形状单一、成型周期长、超滤膜成型方法落后的缺陷,不利于陶瓷超滤膜在实际生产过程中的需要,限制了陶瓷超滤膜的应用和发展。具体内容针对目前陶瓷超滤膜形状单一、成型困难、成型周期长的缺陷,提出了一种陶瓷超滤膜的制备方法,为实现上述目的,本发明将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行快速成型处理,制备成各种空间结构的陶瓷超滤膜,成型方法简单,实用性强,水通量大等。一种陶瓷超滤膜的制备方法的具体制备步骤如下:1)将10-20重量份的胶体颗粒用70-80重量份溶剂在常温下边搅拌边进行溶解,搅拌速度50-80r/min让胶体颗粒在溶剂中形成分散均一、稳定的溶胶;2)将步骤1)得到的溶胶与2-5重量份的造孔剂一起加入到行星式球磨机中,在300-350r/min的转速条件下充分研磨、分散、混合20_30min后出料,进行抽滤得到混合物;3)将步骤2)得到的混合物放入高温烧结炉中,在600-800°C的温度下烧结l_2h,常温冷却后出料,再用行星式球磨机进行研磨,然后过筛,得到多孔陶瓷微粒;4)根据实际生产情况的需要,对陶瓷超滤膜在厚度、形状、空间结构上的要求进行分析,利用计算机建立数字模型,编写三维快速成型的执行程序和命令;5)将步骤3)得到的多孔陶瓷微粒加入到粉末烧结激光快速成型机的料槽中,用计算机导入步骤4)编写好的执行程序和命令,粉末烧结激光快速成型机在计算机的自动控制下进行三维快速成型,制得不同形状、立体结构、厚度的陶瓷超滤膜。上述一种陶瓷超滤膜的具体制备步骤1)中,所述的胶体颗粒为氧化铝、氧化钛、氧化锆、氧化硅溶胶中的一种或多种;所述的溶剂为去离子水;所述的造孔剂为直径为IO-1OOnm的纳米碳酸钙、纳米碳酸镁中的一种或两种。上述一种陶瓷超滤膜的具体制备步骤2)中,所述的过筛是过2000-5000目的筛。上述一种陶瓷超滤膜的具体制备步骤3)中,所述的粉末烧结激光快速成型机采用选择性激光烧结成型技术,即采用C02激光器按电脑上设计好的三维图形,在计算机的控制下,把涂在工作台上的一层的打印粉末材料烧结成型的原理,是三维快速成型技术主要成型设备中的一种,主要由扫描系统、激光控制系统、加热元件、成型缸、供料系统、运动部件、冷却系统、运动控制系统、软件系统组成。利用快速成型中选择性激光烧结成型技术的原理,将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行成型处理,制成各种空间结构的陶瓷超滤膜,成型方法简单、成型周期短、实用,该陶瓷超滤膜的截留率大,孔径分布范围lO-lOOnm,在0.1Mpa的操作条件下水通量为100_200L/m3.h。突出的特点在于:1、采用三维快速成型技术,使陶瓷超滤膜成型方便、成型周期短、形状多样化,满足对陶瓷超滤膜各种形状和结构的需求。2、不需要模具,极大提高了陶瓷超滤膜的生产效率,拓宽了应用范围。

厦门盐水精制陶瓷膜哪家好Benfer等以正丙醇锆为前驱体,采用聚合溶胶路线制备出ZrO2纳滤膜,其对染料“直接红”(MW=990.8g·MOl-1)的截留率达99.2%TSuru等在平均孔径约1μM的α-Al2O3支撑体上经多次涂覆制备出平均孔径为1.2nm的TiO2膜层,其截留分子量为600DA,对nACl的截留率达60%。漆虹等通过聚合溶胶路线制备出平均粒径为1.2nmTiO2溶胶,所制备的TiO2纳滤膜对PEg的截留分子量为890DA,对0.025MOl·l-1的CA2+和Mg2+溶液的离子截留率分别达到96.5%和98%(Ph=4.0,5×105PA)。TSuru等采用颗粒溶胶路线制备了一系列不同粒径分布的SiO2-ZrO2复合溶胶,并制备出平均孔径为9、1.6、1.0nm的SiO2-ZrO2复合膜层,所用的溶胶粒径越小,膜的平均孔径越小。AuST等通过聚合溶胶路线制备TiO2-ZrO2复合纳滤膜,通过调整钛锆前驱体的比例,制备出不同分离精度的纳滤膜,对染料“直接红”的截留率均大于95%,并且相比较于纯TiO2和ZrO2纳滤膜,具有较高的相转化温度和热稳定性。2修饰技术溶胶-凝胶法制备小孔径超滤膜已经商业化,为了进一步提升膜的渗透与分离性能,研究者们也一直研究减小陶瓷膜孔径和改善孔径分布的修饰技术。实现陶瓷膜的修饰可以采用化学气相沉积法、超临界流体沉积技术、原子层沉积技术和表面接枝技术。这些调控孔的手段不仅可以修复可能存在的大孔缺陷,提高膜的稳定性,还可以进一步减小膜的孔径,提高膜的分离精度。1化学气相沉积法修饰陶瓷膜孔径采用化学气相沉积法(CVD)在多孔基底表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及渗透性能,是一项非常有效的手段。lABrOPOulOS等在573K温度下,采用循环CVD的方法,成功地将SiO2膜平均孔径由初始的1nm减小至0.56nm。lin等采用CVD法对平均孔径为4nm的γ-Al2O3陶瓷膜进行修饰,制备出厚约1.5μM,孔径范围为0.4~0.6nm的SiO2膜。

ptfe各级过滤组件过滤出的精制过滤盐水通过陶瓷膜过滤器各级渗透清液出口排出,在混合器中,加入亚硫酸钠,自流进入一次盐水贮槽,再经由一次盐水泵送到螯合树脂塔进行二次精制3无机陶瓷膜主要有如下优点3.1孔径分布窄,分离精度高无机陶瓷膜过滤器的过滤能力是一般有机聚合物膜过滤能力的2~5倍,在某些特殊领域甚至可达20倍,无机陶瓷膜过滤器无需要借助其它的固液分离设备或预处理工艺来达到净化液体的目的,而是通过陶瓷膜一次过滤完成固液分离。采用50nm孔径的陶瓷超滤膜可以完全去除化盐水中的固体悬浮物,使过滤盐水澄清透明,利于离子膜电槽的高效运行。过滤器的过滤范围广,被过滤的液体的沉淀物含量可从20ppm到25%均可被有效去除且滤液清澈。不会因为进液含固量的变动而变动,滤液质量稳定可靠。3.2耐高温、耐酸碱、耐溶剂、耐氧化陶瓷膜支撑体是采用高纯度进口α-Al2O3在1600℃以上高温情况下烧结而成,具有广阔的操作温度,其使用温度一般可达400℃,可到800℃,其适用介质pH的范围为0~14,并且能在很强的氧化介质中使用。3.3机械强度高,有良好的耐磨、耐冲刷性能无机陶瓷膜可承受高达几十千克每平方厘米的操作压力,并可以反向冲洗。具有极好的化学稳定性,能耐酸、碱、盐溶液及有机溶剂和强氧化剂。优良的过滤特性使得其寿命长,维修费用很低,使用成本也大为降低。3.4渗透通量大无机陶瓷膜有很高的孔隙率,高达35%以上,因此其盐水通量很高,其中50nm孔径的陶瓷超滤膜饱和氯化钠盐水通量大于700L/m2.h。可反复清洗及高温再生恢复渗透通量,使用寿命长,采用酸、碱清洗,能有效的恢复膜渗透通量,使用寿命可达5年以上。

厦门10纳米陶瓷膜多少钱目前,国内外已有一些无机膜处理油田采出水用于外排或回注的报道,但采用的膜孔径基本在200nm以上,其出水水质不能或难以稳定地达到低渗透层回注水质A1级要求为此,作者采用孔径为100nm的陶瓷超滤膜对大庆油田采出水进行试验研究,考察其出水水质及适宜的操作条件。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

厦门镀锌脱脂废水现在用无机陶瓷超滤膜进行处理,渗透液经调整后直接送至印刷车间回用,浓缩液经过喷雾干燥变为粉末,可用于制造粉笔这样,基本实现零排放。此工艺的优点是能耗少,操作简单,占地少,可回收有用物质陶瓷滤芯陶瓷膜陶瓷膜过滤器。

作为一种含氟的高分子材料,由于其中的氟元素具有较强的负极性,从而使PVDF膜不易吸附有机物而具备良好的抗污性能采用PVDF生产的膜组织结构均匀,孔隙分布均匀,膜表面孔小而内部孔大,这种结构也是膜孔不易污堵基本条件之一。PVDF作为一种有机高分子材料,和其它高分子材料一样,具有高疏水性。纺制PVDF中空纤维膜丝时,一般都会对PVDF进行亲水性改性。改性后生产出来的PVDF膜丝亲水性能好,表面开孔率高,分布均匀。所以,以PVDF中空纤维超滤膜为滤膜生产的净水器,通量比一般膜材料的净水器高很多。PVDF中空纤维超滤膜孔隙孔径小于0.1微米,目前世界上已发现的最小细菌直径在0.2微米以上。因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。同时保留水中对人体有益的矿物质。PVDF中空纤维超滤膜具有良好的过滤精度,使用在净水器上,相当于在自家安装一台小型矿泉水生产设备,简单方便又健康。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

王信玮等考察了溴代聚苯醚膜对甲醇/正戊烷、乙醇/正戊烷等有机溶剂体系的分离性能;Bhaumik等[9]在中空纤维膜表面涂覆聚合硅树脂制备复合膜回收甲醇和甲苯等有机溶剂;Kim等[10]和李焦丽等[11]均报道了改性膜对有机溶剂的回收效率这些研究在一定程度上实现了特定有机溶剂分离回收,但主要基于渗透汽化原理,对有机溶剂在液态下以膜净化的研究较少。陶瓷膜具有化学稳定性好、抗微生物能力强、使用寿命长、易清洗及膜组件强度大等优点,广泛应用于化工、环保、医药和食品等行业,崔鹏等以陶瓷膜微滤凹凸棒土悬浆液;Lobo等采用陶瓷超滤膜分离油水乳状液;曾坚贤等以陶瓷微滤膜处理肌苷发酵液和柑桔汁。这些工作均以水溶液为背景,少见陶瓷膜微滤溶剂油的研究报道。前期已研究了特定体系的陶瓷膜微滤行为,所得结论适用于水相介质。本工作以陶瓷膜微滤200溶剂汽油,污染膜清洗在水溶液中进行,清洗结束后装置中残存水分,可能会影响后续溶剂油微滤。因此,本工作研究不含水溶剂油和含0.5%(ω)水溶剂油的陶瓷膜微滤行为,以考察水的影响程度,同时研究操作时间、跨膜压差、错流速度、温度及铝粉含量对膜通量的影响,探讨铝粉截留率随操作时间的变化规律,优化操作参数,研究反冲操作、浓缩过程及污染膜的化学清洗。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

随着煤炭开采强度的加大和延伸速度的不断提高,矿区地下水位将大面积下降,使缺水矿区供水更为紧张,从而影响当地居民的正常生产和生活,已制约了煤炭生产的发展由于不同地区地质结构和岩性的差异,使得矿井水水质差别较大,根据矿井水中含有的主要物质可分为:含悬浮物矿井水、高矿化度矿井水、酸性矿井水、含放射性元素的矿井水等。除酸洗矿井水和含放射性元素的矿井水外,其他两类的矿井水中普遍含有以煤岩粉为主的悬浮物以及可溶的无机盐类,有机物污染较少且一般不含有毒物质。因此,对矿井水进行净化处理回用,将产生巨大的经济效益和社会效益。处理以煤岩粉为主的悬浮物固含量高的矿井水,一般采用絮凝沉降工艺,最后再通过双滤料过滤器加活性炭过滤就能达到中水回用排放的程度。但这种方法虽然投资小、运行成本低,但同时也有占地面积大、出水水质不稳定等问题,尤其在原水水质出现波动时,如水中岩粉浓度偏高、粒度偏小、铁含量偏大的红色矿井水,出现水中悬浮物无法絮凝沉降,导致出水水质浑浊、絮凝剂用量偏大的结果,不但增加了运行成本,而且处理后的出水无法达到排放标准,产生了环保问题。以膜分离为主要手段的矿井水处理工艺,在近几年的膜行业的发展中也频频用于矿井水处理工艺中。CN101890258A、CN2027444`09U和CN202766374U等专利都分别采用了膜或膜分离集成工艺处理矿井水来达到处理后回用的目的。但在这些专利技术中都只是提及膜作为一个分离单元使用,而对其中的膜污染和膜污染的控制均未涉及,尤其在如何提高膜的处理效率及膜渗透通量上都未提及。事实上,膜分离过程是一个膜污染不断增大的过程。因为在对固液、胶体分离的同时,被截留的浓液中固体含量不断增大,产生了浓差极化和膜面沉积,这就是膜污染。