新闻中心

值得推荐的厦门陶瓷超滤膜公司

* 来源: * 作者: * 发表时间: 2021-03-15 15:10:53 * 浏览: 23

纳米氧化铝洗涤琚行松采用颗粒溶胶路线制备出ZrO2超滤膜,膜的烧结温度从1100℃降低到500℃,膜的最可几孔径由50nm减小到20nm,随着温度的降低分离精度提高陶瓷纳滤膜具有更高的分离精度,可用于低聚糖、染料、多价离子等选择性分离。TSuru等通过聚合溶胶路线制备出平均孔径0.7~5nm可调控的TiO2纳滤膜,对PEg的截留分子量为500~2000DA,其中截留分子量为800DA的纳滤膜对Mg2+的截留率为88%,对棉籽糖(MW=504g·MOl-1)的截留率达99%。Benfer等以正丙醇锆为前驱体,采用聚合溶胶路线制备出ZrO2纳滤膜,其对染料“直接红”(MW=990.8g·MOl-1)的截留率达99.2%。TSuru等在平均孔径约1μM的α-Al2O3支撑体上经多次涂覆制备出平均孔径为1.2nm的TiO2膜层,其截留分子量为600DA,对nACl的截留率达60%。漆虹等通过聚合溶胶路线制备出平均粒径为1.2nmTiO2溶胶,所制备的TiO2纳滤膜对PEg的截留分子量为890DA,对0.025MOl·l-1的CA2+和Mg2+溶液的离子截留率分别达到96.5%和98%(Ph=4.0,5×105PA)。TSuru等采用颗粒溶胶路线制备了一系列不同粒径分布的SiO2-ZrO2复合溶胶,并制备出平均孔径为9、1.6、1.0nm的SiO2-ZrO2复合膜层,所用的溶胶粒径越小,膜的平均孔径越小。AuST等通过聚合溶胶路线制备TiO2-ZrO2复合纳滤膜,通过调整钛锆前驱体的比例,制备出不同分离精度的纳滤膜,对染料“直接红”的截留率均大于95%,并且相比较于纯TiO2和ZrO2纳滤膜,具有较高的相转化温度和热稳定性。2修饰技术溶胶-凝胶法制备小孔径超滤膜已经商业化,为了进一步提升膜的渗透与分离性能,研究者们也一直研究减小陶瓷膜孔径和改善孔径分布的修饰技术。实现陶瓷膜的修饰可以采用化学气相沉积法、超临界流体沉积技术、原子层沉积技术和表面接枝技术。这些调控孔的手段不仅可以修复可能存在的大孔缺陷,提高膜的稳定性,还可以进一步减小膜的孔径,提高膜的分离精度。

高温除尘中国专利公开号CN101791524A公开了一种非对称结构陶瓷超滤膜及其制备方法,本发明将一维纤维状材料分散于溶胶中,充分混合,加入分散剂、增稠剂、消泡剂配制成制膜液,在多孔支撑体上涂膜,经烘干后形成过渡层,在过渡层表面涂覆溶胶制膜液,将湿膜晾干、烘干,焙烧,自然降温即得非对称结构陶瓷超滤膜,该陶瓷超滤膜具有水通量大大优点中国专利公开号CN1686920A公开了一种陶瓷微滤膜的制备方法,本方法将纳米级氧化物分散于由分散剂、增稠剂、消泡剂和防腐剂混合水溶液中,均匀形成涂膜液,再添加模板剂,用所制得的涂膜液在多孔金属或者多孔陶瓷支撑体上涂膜,并在湿膜晾干、烘干后,处理脱除聚合物模板剂,最后进行焙烧成型,得到陶瓷微滤分离膜。上述专利都是陶瓷超滤膜的制备方法,采用了不同的配方和制备方法,制得了性能优异的陶瓷超滤膜,但都使用了多孔支撑体作为膜的载体,从而制备的超滤膜具有形状单一、成型周期长、超滤膜成型方法落后的缺陷,不利于陶瓷超滤膜在实际生产过程中的需要,限制了陶瓷超滤膜的应用和发展。具体内容针对目前陶瓷超滤膜形状单一、成型困难、成型周期长的缺陷,提出了一种陶瓷超滤膜的制备方法,为实现上述目的,本发明将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行快速成型处理,制备成各种空间结构的陶瓷超滤膜,成型方法简单,实用性强,水通量大等。一种陶瓷超滤膜的制备方法的具体制备步骤如下:1)将10-20重量份的胶体颗粒用70-80重量份溶剂在常温下边搅拌边进行溶解,搅拌速度50-80r/min让胶体颗粒在溶剂中形成分散均一、稳定的溶胶;2)将步骤1)得到的溶胶与2-5重量份的造孔剂一起加入到行星式球磨机中,在300-350r/min的转速条件下充分研磨、分散、混合20_30min后出料,进行抽滤得到混合物;3)将步骤2)得到的混合物放入高温烧结炉中,在600-800°C的温度下烧结l_2h,常温冷却后出料,再用行星式球磨机进行研磨,然后过筛,得到多孔陶瓷微粒;4)根据实际生产情况的需要,对陶瓷超滤膜在厚度、形状、空间结构上的要求进行分析,利用计算机建立数字模型,编写三维快速成型的执行程序和命令;5)将步骤3)得到的多孔陶瓷微粒加入到粉末烧结激光快速成型机的料槽中,用计算机导入步骤4)编写好的执行程序和命令,粉末烧结激光快速成型机在计算机的自动控制下进行三维快速成型,制得不同形状、立体结构、厚度的陶瓷超滤膜。上述一种陶瓷超滤膜的具体制备步骤1)中,所述的胶体颗粒为氧化铝、氧化钛、氧化锆、氧化硅溶胶中的一种或多种;所述的溶剂为去离子水;所述的造孔剂为直径为IO-1OOnm的纳米碳酸钙、纳米碳酸镁中的一种或两种。上述一种陶瓷超滤膜的具体制备步骤2)中,所述的过筛是过2000-5000目的筛。上述一种陶瓷超滤膜的具体制备步骤3)中,所述的粉末烧结激光快速成型机采用选择性激光烧结成型技术,即采用C02激光器按电脑上设计好的三维图形,在计算机的控制下,把涂在工作台上的一层的打印粉末材料烧结成型的原理,是三维快速成型技术主要成型设备中的一种,主要由扫描系统、激光控制系统、加热元件、成型缸、供料系统、运动部件、冷却系统、运动控制系统、软件系统组成。利用快速成型中选择性激光烧结成型技术的原理,将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行成型处理,制成各种空间结构的陶瓷超滤膜,成型方法简单、成型周期短、实用,该陶瓷超滤膜的截留率大,孔径分布范围lO-lOOnm,在0.1Mpa的操作条件下水通量为100_200L/m3.h。突出的特点在于:1、采用三维快速成型技术,使陶瓷超滤膜成型方便、成型周期短、形状多样化,满足对陶瓷超滤膜各种形状和结构的需求。2、不需要模具,极大提高了陶瓷超滤膜的生产效率,拓宽了应用范围。

陶瓷膜废水处理铝粉颜料遮盖力好,具有漂浮性,不透光,能反射可见光、红外线和紫外线的60%~90%,对太阳光具有散热作用,耐气候性良好,防腐和耐水性能优良,还具有特殊的正视明亮、侧视变暗的“双色效应”近30年来,铝粉颜料发展十分迅速,品种大幅度增加,在汽车、建筑、金属闪光漆和印刷油墨等领域中广泛应用。铝粉颜料分为油性和水性两大类,前者生产技术成熟,主要工艺包括雾化铝粉→物料混合→球磨→过筛→抛光→铝粉颜料,球磨阶段需加入溶剂油(如200溶剂汽油)以防止铝粉氧化,生产过程结束时产生大量含铝粉等杂质的溶剂油,需净化回收。膜分离技术具有能耗低、操作简便、分离效率高和环境友好等特点,在有机溶剂回收领域备受关注。王信玮等考察了溴代聚苯醚膜对甲醇/正戊烷、乙醇/正戊烷等有机溶剂体系的分离性能;Bhaumik等[9]在中空纤维膜表面涂覆聚合硅树脂制备复合膜回收甲醇和甲苯等有机溶剂;Kim等[10]和李焦丽等[11]均报道了改性膜对有机溶剂的回收效率。这些研究在一定程度上实现了特定有机溶剂分离回收,但主要基于渗透汽化原理,对有机溶剂在液态下以膜净化的研究较少。陶瓷膜具有化学稳定性好、抗微生物能力强、使用寿命长、易清洗及膜组件强度大等优点,广泛应用于化工、环保、医药和食品等行业,崔鹏等以陶瓷膜微滤凹凸棒土悬浆液;Lobo等采用陶瓷超滤膜分离油水乳状液;曾坚贤等以陶瓷微滤膜处理肌苷发酵液和柑桔汁。这些工作均以水溶液为背景,少见陶瓷膜微滤溶剂油的研究报道。前期已研究了特定体系的陶瓷膜微滤行为,所得结论适用于水相介质。本工作以陶瓷膜微滤200溶剂汽油,污染膜清洗在水溶液中进行,清洗结束后装置中残存水分,可能会影响后续溶剂油微滤。因此,本工作研究不含水溶剂油和含0.5%(ω)水溶剂油的陶瓷膜微滤行为,以考察水的影响程度,同时研究操作时间、跨膜压差、错流速度、温度及铝粉含量对膜通量的影响,探讨铝粉截留率随操作时间的变化规律,优化操作参数,研究反冲操作、浓缩过程及污染膜的化学清洗。

平板陶瓷膜哪家好根据膜形状的不同,可分为平板膜、管式膜、毛细管膜、中空纤维膜等市面上家用净水器用的膜基本上都是中空纤维膜。【无机膜】无机膜中,陶瓷超滤膜在家用净水器中应用比较多。陶瓷膜寿命长,耐腐蚀,但出水有土味,影响口感。同时陶瓷膜易堵塞,清洗不易。中空纤维超滤膜由于其填充密度大,有效膜面积大,纯水通量高,操作简单易清洗等优势,被广泛应用于家用净水行业。在单位膜丝面积产水量不变的情况下,滤芯装填的膜面积越大,则滤芯的总产水量越多。【按膜的外形特征可将超滤膜】分为:①平板膜;②管式超滤膜,孔径gt,lOnm;③毛细管式超滤膜,孔径O.50~10.00nm;④中空纤维超滤膜,孔径lt,0.5nm;⑤多孔超滤膜。【中空纤维超滤膜】一支超滤膜由成百到上千根细小的中空纤维丝组成,一般将中空纤维膜内径在0.6-6mm之间的超滤膜称为毛细管式超滤膜,毛细管式超滤膜因内径较大,不易被大颗粒物质堵塞。系统优点1、超滤膜元件采用世界著名膜公司产品,确保了客户得到目前世界上最优质的有机膜元件,从而确保截留性能和膜通量。2、系统回收率高,所得产品品质优良,可实现物料的高效分离、纯化及高倍数浓缩。

废油再生成套设备根据通道数不同,主要分为单通道和多通道两大类此外,还有部分产品将根据产品特定的属性而采用不同的分类方法,在此不予说明。◎陶瓷膜管、陶瓷复合膜管的基础技术参数膜孔径:1.2μm、0.8μm、0.5μm、0.2μm、0.1μm、50nm、20nm、10nm、4nm膜材质:氧化锆、氧化铝、氧化钛长度:配套可选规格耐压强度:1.0Mpa适用pH值:0~14适用温度:-10℃~150℃陶瓷滤芯陶瓷膜陶瓷膜过滤器。

为了研究这两个试验因素在膜处理废液时对膜通量的影响中贡献的大小,取这两因素的各个水平进行排列组合式试验设计,结果见表2经OriginPro7.0分析,TMP的极差R1=418.4、温度的极差R:=249.3。因此,TMP是最主要因素。这一结果与其对纯水通量的影响相似,但对废液膜通量的影响力要小些。根据排出的聚醚废水本身的温度,以及考虑到系统开启后水泵运转过程中传递给料液的热量和降低能耗等方面的因素,初步确定操作参数为温度43~53oC、TMP为0.20MPa.若压差过大会造成膜污染的加剧。上述操作参数下.经反复循环过滤.储料罐内的废液越来越浓稠且刺激性气味越来越大.而渗出液十分清澈。经多次试验观察,43℃时,COD的平均去除率为96.22%,达到本试验的设计要求(COD去除率gt,95%),在温度gt,43oC后,COD去除率随温度升高而提高的趋势已平缓.若再提高温度会加大系统能耗而对提高处理效果的贡献不大.由此确定将温度控制在43℃左右。2.4膜的清洗与膜通量的恢复在试验初期,采用四步清洗法:(1)停机排空浓缩液后,关闭K,,自来水循环清洗10min,将系统内管壁上、膜表面的部分污染物清洗下来,清洗后排出的清洗液为含有大量油状物质的混浊液:(2)85oC下,打开K,用质量分数2%的NaOH循环碱洗30min.使附着在膜表面和膜孔内的有机污染物溶于热碱液中被切向流带走.排出的清洗液略显混浊:(3)漂洗至中性后,50℃下,用质量分数2%的HNO,循环酸洗30min,主要是为了将钙、镁等阳离子沉积盐溶于酸后清洗干净;(4)漂洗至中性后,纯水(电导率lt,35~S/cm)清洗30min。清洗完毕后,关闭各阀门使整根膜浸泡在纯水中。此时,膜通量可恢复至原有水平。上述方法清洗效果良好但程序繁琐.整个清洗过程用时大约150min耗费时间过长。

其中,混凝将微小颗粒物聚合形成絮体,膜过滤将颗粒物完全去除,臭氧可以氧化有机物和提高有机物的可生化性,活性炭可以进一步去除有机物和水中的氨氮,从而达到去除污染物的目的本文集成工艺有助于在现有水厂构筑物基础上实现传统工艺向深度处理工艺的升级。一、试验材料与方法实验采用东江水和东莞运河的配水为原水,以混凝/臭氧/陶瓷膜→炭滤→消毒为处理工艺,中试实验规模为120m3/d。实验采用的浸没式平板陶瓷膜由明电舍(日本)公司采用新型纳米材料工艺研制,膜平均孔径为60nm。单块陶瓷膜的尺寸为1046mm×260mm×6mm,每个膜组件包含50块陶瓷膜,实验共使用两个膜组件,总的膜面积为50m2。膜过滤时恒定通量为100L/m2·h,过滤周期为240min反冲洗3min,反冲洗强度为15m3/h。臭氧发生器为OZONIACFS-32G型,以纯氧为气源,通过设在膜池底部的微孔曝气板进入水体。浊度采用HACH2100P浊度仪测量,采用GR-100A台式激光颗粒物分析仪(IBR)测量颗粒数,用SinscheTA-88微量自动分析仪测量氨氮、亚硝态氮,用ShimadzuUV-1700紫外-可见光分光光度计测量UV254和硝态氮,用ShimadzuTOC-VCPH测量DOC,用GC-μECD测量三卤甲烷,用HSPME-GC/MS测量Geo-smin和2-MIB,用SPE-GC/MS测量EDCs,用SPE-LC/MS/MS测量卤乙酸和PPCPs。二、结果与讨论1、集成工艺对浊度的去除陶瓷膜对浊度的去除效果显著,出水浊度稳定在0.1NTU以下,不受原水浊度波动的影响。经过活性炭过滤后出水浊度略有上升,但仍低于0.25NTU,优于国家饮用水卫生标准的要求。膜出水中粒径大于2μm的颗粒数基本低于10个/mL,炭滤出水中粒径大于2μm的颗粒数低于50个/mL。

这种陶瓷微滤膜材料是在原有刚玉质多孔陶瓷材料基础上,通过在材料外表面或内表面采用喷涂、浸渍、烧结技术涂覆一层孔径0.5~30um、厚度100~300um的均匀氧化铝膜过滤层,其中刚玉质多孔陶瓷材料作为膜支撑体,具有较高机械强度、较大孔径(60~150um)和较小的过滤阻力与传统多孔管陶瓷材料相比,这种具有孔梯度结构的陶瓷膜材料具有过滤精度高、过滤阻力小、清洗再生效果好等优点,实现了传统多孔陶瓷材料技术升级。90年代后期,随着国外陶瓷超滤膜、纳滤膜技术的发展,国内相关单位也开始开展了用于错流过滤的多通道陶瓷材料的研究开发工作。其中,南京工业大学研究团队,最早完成了多通道陶瓷微滤膜、超滤膜、纳滤膜的研究开发工作。这种多通道陶瓷膜材料主要是以高纯氧化铝(或刚玉砂)为原料,首先采用挤出成型工艺制备孔径3~5um多通道(包括单通道、7通道、19通道、37通道等)管状陶瓷膜支撑体,然后在支撑体通道内表面采用粒子烧结工艺或溶胶-凝胶工艺制备一层或多层膜过滤层,膜层孔径从0.8um到几个纳米不等,膜层材料主要有氧化铝质、氧化钛质、氧化锆质或其复合材料。特殊的通道结构设计、光滑的膜表面、较高进一步拓宽了产品应用领域。目前,国内在多通道陶瓷膜材料的研究及开发应用方面已达到较高水平,在膜材料制备、抗污染性能研究、膜材料修饰与复合技术、应用开发方面也都取得了较大进展,多通道陶瓷膜材料在目前国内陶瓷膜材料领域占有较大比重。进入21世纪以来,随着国家节能减排政策实施,高温气体净化技术对先进膜过滤材料的需要,具有耐高温、耐高压、过滤效率高、适用范围广的高温陶瓷膜材料引起国内重视。山东工业陶瓷研究设计院也在多年从事陶瓷膜材料研究开发基础上,从上世纪90年代末开始,开展了高温陶瓷膜材料的研究开发工作。先后采用热浇注成型工艺、挤出成型工艺以及等静压成型工艺先后完成了刚玉质、堇青石质以及碳化硅质陶瓷及陶瓷纤维复合膜材料的研究开发。其中以多孔堇青石陶瓷材料为支撑体,以莫来石-硅酸铝纤维为复合膜过滤层的堇青石质陶瓷纤维复合膜材料与其它多孔陶瓷材料相比,具有气孔率高、过滤阻力小体积密度小、耐高温性能优良等优点,可用于700℃以下各种高温气体(烟尘)净化,过滤精度小于1um,过滤阻力小于2000Pa,净化后气体杂质浓度一般小于10mg/N·m3。