新闻中心

质量好的厦门陶瓷超滤膜多少钱

* 来源: * 作者: * 发表时间: 2021-05-18 3:30:14 * 浏览: 3

厦门陶瓷膜组件上述一种陶瓷超滤膜的具体制备步骤2)中,所述的过筛是过2000-5000目的筛上述一种陶瓷超滤膜的具体制备步骤3)中,所述的粉末烧结激光快速成型机采用选择性激光烧结成型技术,即采用C02激光器按电脑上设计好的三维图形,在计算机的控制下,把涂在工作台上的一层的打印粉末材料烧结成型的原理,是三维快速成型技术主要成型设备中的一种,主要由扫描系统、激光控制系统、加热元件、成型缸、供料系统、运动部件、冷却系统、运动控制系统、软件系统组成。利用快速成型中选择性激光烧结成型技术的原理,将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行成型处理,制成各种空间结构的陶瓷超滤膜,成型方法简单、成型周期短、实用,该陶瓷超滤膜的截留率大,孔径分布范围lO-lOOnm,在0.1Mpa的操作条件下水通量为100_200L/m3.h。突出的特点在于:1、采用三维快速成型技术,使陶瓷超滤膜成型方便、成型周期短、形状多样化,满足对陶瓷超滤膜各种形状和结构的需求。2、不需要模具,极大提高了陶瓷超滤膜的生产效率,拓宽了应用范围。3、生产过程简单,操作方便,生产成本低,易于工业化生产,应用范围更加广泛。生产工艺流程见说明书附图1。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

厦门化工平板陶瓷膜因此,为制备高渗透选择性陶瓷膜必须努力减小膜层颗粒的大小及通过修饰技术进一步减小孔径,并设法获得更窄孔径分布的陶瓷膜,达到更加精细的分离精度陶瓷滤芯陶瓷膜陶瓷膜过滤器。

厦门电厂脱硫废水在本工艺中,臭氧除了通过氧化去除有机物,还能通过反应提高有机物的可生化性,促进后续生物活性炭对有机物的去除,从而达到好的去除效果原水氨氮浓度小于3.5mg/L时,工艺出水氨氮浓度小于0.1mg/L,远低于国家标准GB5749-2006规定的0.5mg/L,氨氮总去除率gt,95%。而且出水中几乎没有亚硝酸氮存在,氨氮基本都经过硝化转化为硝酸盐氮。混凝和陶瓷膜对氨氮的去除有限,臭氧对陶瓷膜去除氨氮没有促进作用。活性炭滤池对氨氮去除效果显著,占整个工艺去除率的70%以上。溶解氧是氨氮去除的关键因素,本工艺中的臭氧由纯氧制备,投加臭氧时水中溶解氧浓度升高至11~13mg/L,基本满足氨氮去除的要求。(图2~9)3、集成工艺对消毒副产物前体物的去除以三卤甲烷(THMs)和卤乙酸(HAAs)的生成潜势作为消毒副产物前体物进行考察,原水中THMFP以CHCl3为主,占85%以上,其次为CHCl2Br和CHClBr2,未检测到CHBr3的存在。HAAs的生成势以DCAA和TCAA为主,二者共占90%以上。消毒副产物前体物的去除规律基本与DOC保持一致,集成工艺对THMFP和HAAFP的去除率分别为77%和76%。4、集成工艺对嗅味物质、EDCs和PPCPs的去除嗅味物质、EDCs和PPCPs在原水中含量很低,浓度在ng/L的范围,但传统工艺不能有效去除。典型的嗅味物质如土臭素(Geosmin)和2-甲级异莰醇(2-MIB)在ng/L水平时已能影响人的感官,而EDCs和PPCPs则会给人体带来未知的健康风险。

生物高性能陶瓷膜无机膜根据孔径大小大致可分为微滤膜(0.1~10um)、超滤膜(1~100nm)、纳滤膜(0.1~10nm)等目前已商品化的无机膜形状主要有平板式、管式和多通道蜂窝体三种,其中平板式主要用于实验室试验和小规模的工业化生产;管式膜由于结构简单、安装维修方便、易清洗、便于控制浓差极化和膜污染等优点,特别是在大面积膜的制备和使用上,管式膜比板式膜更方便可靠,因此是无机膜工业化应用的主要形式;为了提高管式膜的装填面积,通常将其做成多通道蜂窝状,有助于降低产品成本和能耗。现在用无机陶瓷超滤膜进行处理,渗透液经调整后直接送至印刷车间回用,浓缩液经过喷雾干燥变为粉末,可用于制造粉笔。这样,基本实现零排放。此工艺的优点是能耗少,操作简单,占地少,可回收有用物质陶瓷滤芯陶瓷膜陶瓷膜过滤器。

FDA认证陶瓷膜早在上个世纪末期,国内生产的石英质、刚玉质、硅酸铝制、硅藻土质等多孔陶瓷材料就开始在一些化工流体精细过滤、制药行业、钢厂循环水净化、饮用水净化方面推广应用,用以替代砂滤、活性炭过滤,取得了良好效果随着国内陶瓷超滤膜、纳滤膜技术发展和材料的研究开发,陶瓷膜材料在国内水处理领域应用日益广泛,如用于含油废水处理、乳化液废水处理、印染及造纸废水处理、盐水精制等。陶瓷膜材料由于具有优异的亲水性能、耐油性能和耐腐蚀性能,采用陶瓷膜材料用于含油废水处理,处理后含油浓度可以达到5PPM以下,相比于其它过滤材料,包括有机膜材料,在含油废水处理领域具有更大的优越性和应用推广价值。目前国内正在开发应用的一种陶瓷膜材料为MBR平板陶瓷膜材料,它是基于一种蜂窝状的平板膜材料,主要用于膜反应器水处理工艺中污水深度处理,可代替现有有机膜组件,提高膜的运行效率、使用寿命。平板陶瓷膜材料由于具有机械强度高、化学稳定性好、透水性高、耐氧化、抗污染性好、易于清洗再生、使用寿命长等优点,可有效解决现有其它膜材料在工程应用过程中存在的使用寿命短,易受酸碱腐蚀等问题,特别适于高浓度、难处理污水的高效净化。目前这一材料已在国内的垃圾渗滤液处理、化工污水处理、市政污水处理方面开发应用,未来市场前景广阔。另外,国内在消化吸收国外先进的技术方面,于本世纪初采用真空毛细管原理开发的一种真空陶瓷滤盘,在一定真空下具有透水不透气的效果,以此为核心过滤介质,开发的真空圆盘陶瓷过滤机,被广泛应用于各种“杂、细、粘”物料矿物的脱水工艺中。这种真空陶瓷圆盘过滤机相比传统的物料脱水设备,如真空过滤机、板框过滤机及离心过滤机等,脱水效率和节能效果有了明显提高,相同处理能力下,过滤机整机能耗约为其它真空过滤机1/10,处理成本约为板框式过滤机50%,同时滤饼含水量低,滤液清澈,滤板寿命长,可减少大量设备维修维护费用,被誉为实现了选矿物料脱水设备的二次革命。经过长期发展和过滤设备不断更新,真空圆盘陶瓷过滤机在国内选矿业物料脱水领域应用愈来愈广泛,目前已在铅锌矿、硫金矿、铁矿、煤浮选行业大量推广应用。随着近10年国家洁净煤计划实施及节能减排政策的实施,高温陶瓷膜材料在国内得到一定研究和发展,高温陶瓷膜材料在高温气体净化领域的应用也越来越广泛,从冶炼行业高温烟尘净化、到一些新材料领域的高温放空气体净化、垃圾焚烧尾气净化、一直发展到高温煤气净化等。高温陶瓷膜材料用于高温气体净化优点是使用温度高(900℃以下)、使用压力高(4MPa以下)、过滤效率高(99.95%)和使用寿命长(3~10年)等。

1.2生产运行时,需加入三氯化铁、次氯酸钠等腐蚀性化学药剂,增加了系统设备和管道的腐蚀危害,部分设备和管道受到腐蚀,降低了使用寿命1.3存在有机聚合膜的膜表面剥离、撕裂、腐蚀、孔径拉伸等现象,致使大颗粒物质没有过滤下来,进入到二次盐水中,堵塞螯合树脂塔过滤器,造成盐水流量供应不足,影响电解装置正常生产。1.4砂滤器、精滤器、预处理器等设备表层需要有纤维素涂层硅,表层的纤维涂层硅进入一次盐水中,会造成盐水的二次污染。现在采用无机陶瓷膜法盐水精制工艺,是基于多孔陶瓷介质的筛分效应而进行物质分离的技术,通过对化学反应完全的粗盐水采用高效率的“错流”过滤方式进行膜分离过滤,得到满足离子膜电解装置树脂交换塔进料要求的精制盐水。2工艺流程简述来自界区外的淡盐水、工业水及滤液进入配水桶混合后,由化盐给料泵经汽水混合器加热升温后,送入化盐池化盐,饱和粗盐水自流进入反应池,在反应池盐水进口处折流槽内加入精制剂次氯酸钠、氯化钡、碳酸钠和氢氧化钠,加药后粗盐水在反应桶中,次氯酸钠将有机物氧化分解,氯化钡与硫酸根离子反应生成硫酸钡沉淀,碳酸钠与粗盐水中的钙离子反应生成碳酸钙结晶沉淀,氢氧化钠与粗盐水中的镁离子反应生成氢氧化镁胶体沉淀。完成精制反应的粗盐水自流进入中间池,用陶瓷膜过滤供料泵经粗过滤器截留大于1.0mm机械杂质送往陶瓷膜过滤单元。陶瓷膜过滤单元采用三级串联“错流”过滤方式,由陶瓷膜过滤供料泵送来的粗盐水料液经过滤循环泵先送入陶瓷膜过滤器一级过滤组件过滤,一级组件出来的浓缩液进入二级过滤组件过滤;二级过滤组件出来的浓缩液进入三级过滤组件过滤。各级过滤组件过滤出的精制过滤盐水通过陶瓷膜过滤器各级渗透清液出口排出,在混合器中,加入亚硫酸钠,自流进入一次盐水贮槽,再经由一次盐水泵送到螯合树脂塔进行二次精制。3无机陶瓷膜主要有如下优点3.1孔径分布窄,分离精度高无机陶瓷膜过滤器的过滤能力是一般有机聚合物膜过滤能力的2~5倍,在某些特殊领域甚至可达20倍,无机陶瓷膜过滤器无需要借助其它的固液分离设备或预处理工艺来达到净化液体的目的,而是通过陶瓷膜一次过滤完成固液分离。采用50nm孔径的陶瓷超滤膜可以完全去除化盐水中的固体悬浮物,使过滤盐水澄清透明,利于离子膜电槽的高效运行。过滤器的过滤范围广,被过滤的液体的沉淀物含量可从20ppm到25%均可被有效去除且滤液清澈。

根据孔径不同,主要分为陶瓷微滤膜管、陶瓷超滤膜管二大系列根据通道数不同,主要分为单通道和多通道两大类。此外,还有部分产品将根据产品特定的属性而采用不同的分类方法,在此不予说明。◎陶瓷膜管、陶瓷复合膜管的基础技术参数膜孔径:1.2μm、0.8μm、0.5μm、0.2μm、0.1μm、50nm、20nm、10nm、4nm膜材质:氧化锆、氧化铝、氧化钛长度:配套可选规格耐压强度:1.0Mpa适用pH值:0~14适用温度:-10℃~150℃陶瓷滤芯陶瓷膜陶瓷膜过滤器。

无机超滤膜特别是无机陶瓷超滤膜由于具有抗机械性强、耐高温、耐腐蚀、耐化学试剂等优点在膜分离领域应用广泛目前陶瓷超滤膜大多用粒子烧结法制备基膜,并用溶胶-凝胶法制备反应层,在制备陶瓷超滤膜过程中都要使用多孔的支撑体作为载体,而载体的形状都是统一固定的,不能随着实际生产需要随意改变,复杂的结构形状也无法成型,从而限制了陶瓷超滤膜的使用范围。中国专利公开号CN102743979A公开了一种氧化锆陶瓷超滤膜的制备方法,本发明通过化学共沉淀法制备草酸锆溶胶,采用低温煅烧方法制备得到易分散的氧化锆粉体,然后进行研磨分散,随后加入成膜助剂、干燥控制剂、消泡剂制得涂膜液,将该涂膜液涂于多孔陶瓷膜支撑体上,经过干燥、烧结得到氧化锆陶瓷超滤膜膜层,降低了能耗,提高了超滤膜的性价比。中国专利公开号CN101791524A公开了一种非对称结构陶瓷超滤膜及其制备方法,本发明将一维纤维状材料分散于溶胶中,充分混合,加入分散剂、增稠剂、消泡剂配制成制膜液,在多孔支撑体上涂膜,经烘干后形成过渡层,在过渡层表面涂覆溶胶制膜液,将湿膜晾干、烘干,焙烧,自然降温即得非对称结构陶瓷超滤膜,该陶瓷超滤膜具有水通量大大优点。中国专利公开号CN1686920A公开了一种陶瓷微滤膜的制备方法,本方法将纳米级氧化物分散于由分散剂、增稠剂、消泡剂和防腐剂混合水溶液中,均匀形成涂膜液,再添加模板剂,用所制得的涂膜液在多孔金属或者多孔陶瓷支撑体上涂膜,并在湿膜晾干、烘干后,处理脱除聚合物模板剂,最后进行焙烧成型,得到陶瓷微滤分离膜。上述专利都是陶瓷超滤膜的制备方法,采用了不同的配方和制备方法,制得了性能优异的陶瓷超滤膜,但都使用了多孔支撑体作为膜的载体,从而制备的超滤膜具有形状单一、成型周期长、超滤膜成型方法落后的缺陷,不利于陶瓷超滤膜在实际生产过程中的需要,限制了陶瓷超滤膜的应用和发展。具体内容针对目前陶瓷超滤膜形状单一、成型困难、成型周期长的缺陷,提出了一种陶瓷超滤膜的制备方法,为实现上述目的,本发明将经过溶胶-凝胶、烧结、研磨制得的多孔陶瓷微粒用选择性激光烧结成型技术进行快速成型处理,制备成各种空间结构的陶瓷超滤膜,成型方法简单,实用性强,水通量大等。一种陶瓷超滤膜的制备方法的具体制备步骤如下:1)将10-20重量份的胶体颗粒用70-80重量份溶剂在常温下边搅拌边进行溶解,搅拌速度50-80r/min让胶体颗粒在溶剂中形成分散均一、稳定的溶胶;2)将步骤1)得到的溶胶与2-5重量份的造孔剂一起加入到行星式球磨机中,在300-350r/min的转速条件下充分研磨、分散、混合20_30min后出料,进行抽滤得到混合物;3)将步骤2)得到的混合物放入高温烧结炉中,在600-800°C的温度下烧结l_2h,常温冷却后出料,再用行星式球磨机进行研磨,然后过筛,得到多孔陶瓷微粒;4)根据实际生产情况的需要,对陶瓷超滤膜在厚度、形状、空间结构上的要求进行分析,利用计算机建立数字模型,编写三维快速成型的执行程序和命令;5)将步骤3)得到的多孔陶瓷微粒加入到粉末烧结激光快速成型机的料槽中,用计算机导入步骤4)编写好的执行程序和命令,粉末烧结激光快速成型机在计算机的自动控制下进行三维快速成型,制得不同形状、立体结构、厚度的陶瓷超滤膜。上述一种陶瓷超滤膜的具体制备步骤1)中,所述的胶体颗粒为氧化铝、氧化钛、氧化锆、氧化硅溶胶中的一种或多种;所述的溶剂为去离子水;所述的造孔剂为直径为IO-1OOnm的纳米碳酸钙、纳米碳酸镁中的一种或两种。上述一种陶瓷超滤膜的具体制备步骤2)中,所述的过筛是过2000-5000目的筛。上述一种陶瓷超滤膜的具体制备步骤3)中,所述的粉末烧结激光快速成型机采用选择性激光烧结成型技术,即采用C02激光器按电脑上设计好的三维图形,在计算机的控制下,把涂在工作台上的一层的打印粉末材料烧结成型的原理,是三维快速成型技术主要成型设备中的一种,主要由扫描系统、激光控制系统、加热元件、成型缸、供料系统、运动部件、冷却系统、运动控制系统、软件系统组成。